Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
наим. -4750
наиб. 34
Объяснение:
f(x) = x⁵+15x³-50x
x ∈ [-5 ; 0]
экстремумы (мин или макс) в точках f'(x) = 0
f'(x) = 5x⁴ + 45x³ - 50
5x⁴ + 45x³ - 50 = 0
x⁴ + 9x² - 10 =0
x² = y ≥ 0
y² + 9y -10 =0
D = 121
y = (-9 +11)/2 = 1, второй корень отрицательный - не подходит
x² = 1
x = -1, т. к. 1 ∉ [-5 ; 0]
f(-1) = -1 -15 + 50 = 34
узнать мин или макс можно или через 2-ю производную или сравнить со значениями в окрестности.
Сравним:
f(0) = 0 < 34
f(-2) = -32 - 120 + 100 = -52 < 34
Значит наибольшее на отрезке = 34 и это единственный экстремум на промежутке, значит наименьшее будет на его краях, при 0 уже нашли найдем при -5
(-5)⁵ + 15*(-5)³ + 250 = -3125 - 1875 + 250 = -4750 это и будет наименьшим значением