Найти частное решение линейного неоднородного уравнения 2-го порядка.
Алгоритм решения неоднородного ДУ следующий:
1) Сначала нужно найти общее решение соответствующего однородного уравнения y``+y`-2y=0
Составим и решим характеристическое уравнение:
получены различные действительные корни, поэтому общее решение:
2) Теперь нужно найти какое-либо частное решение неоднородного уравнения
в правой части 4e²ˣ-2x+1. Значит предположу что частное решение неоднородного уравнения нужно искать в виде: y=Аe²ˣ+Bx+C
Найдём первую и вторую производную:
подставим в левую часть
и теперь приравняем к правой
отсюда составим систему
3) Запишем общее решение неоднородного уравнения:
4) теперь найдем частное решение
y(0)=3; y`(0)=5
решая систему получим
Значит вероятность того, что мы извлечем первый шарик под номером 4, равна 0,25
Аналогично данную операцию можно "провернуть" и с другими шариками:
Вероятность того, что мы извлечем второй шарик под номером 2, равна 1/3
Вероятность того, что мы извлечем третий шарик под номером 1, равна 0,5
И вероятность того, что мы извлечем четвертый, последний шарик под номером 3, равна 1
Для того, чтобы нам узнать вероятность того, что шары будут извлечены в последовательности: 4, 2, 1, 3 - нам нужно перемножить каждую из вероятностей извлеченных шаров.
ответ: p≈0,042.