Для выбора старосты согласно условию задачи у нас есть 20 вариантов, так как в условии задачи нам не запретили ставить кого либо из учеников старостой, поэтому из этого выплывает то, что все ученики могут быть старостой.
Для выбора заместителя есть уже 19 вариантов, так как один ученик уже был поставлен старостой, и быть заместителем он не может, а все оставшиеся дети согласно условия могут.
Теперь берем и перемножаем данное количество вариантов и найдем сколько поставить старосту и заместителя есть:
√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18 т.к выглядит по татарски , напишу письменно корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез) , корень из 9 - это 3 , следовательно получаем: корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2 а корень из 4 - это 2, получаем корень из 4,5, умноженное на 3, умноженное на на 2 и ещё раз умноженное на корень из двух 3 и 2 перемножаем , получаем 6. и теперь у нас остаётся корень из 4,5 и корень из двух их мы тоже перемножим , получим корень из 9 а корень из 9 - это 3 получается что 6*3=18 ОТВЕТ : 18 спрашивай, если что не понятно
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y). Решение: 1. Воспользуемся формулами разность синусов и сумма косинусов: Заметим, что оба равенства содержат один и тот же член: . Выразим его из обоих равенств: В получившихся равенствах левые части равны, значит, равны и правые части: . Преобразуем данное равенство: Теперь используем формулы понижения степени синуса и косинуса: Преобразуем данное равенство: n²(1-cos(x-y))=m²(1+cos(x-y)); n²-n²cos(x-y)=m²+m²cos(x-y); m²cos(x-y)+n²cos(x-y)=n²-m²; cos(x-y)(m²+n²)=n²-m²; Используя основное тригонометрическое тождество, выразим sin(x-y): ответ:
Для выбора старосты согласно условию задачи у нас есть 20 вариантов, так как в условии задачи нам не запретили ставить кого либо из учеников старостой, поэтому из этого выплывает то, что все ученики могут быть старостой.
Для выбора заместителя есть уже 19 вариантов, так как один ученик уже был поставлен старостой, и быть заместителем он не может, а все оставшиеся дети согласно условия могут.
Теперь берем и перемножаем данное количество вариантов и найдем сколько поставить старосту и заместителя есть:
поставить заместителя и старосту.
ответ
Объяснение: