М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rozarafo5
rozarafo5
11.10.2021 23:55 •  Алгебра

Вариант I

1. Решите неравенства:

а) 4х2 – 4х – 15 < 0 ; в) х 2 < 1,7х ;

б) х2 – 81 > 0 ; г) х (х + 3) – 6 < 3(х + 1)

2. Решите неравенства методом интервалов:

а) (х + 8)(х – 3) > 0 ; б) ; в) х3 – 64х < 0 .

3. При каких значениях х имеет смысл выражение:

👇
Открыть все ответы
Ответ:
gireeva00
gireeva00
11.10.2021
(5y - 2)(y + 3) = (3y + 2)(2y + 1)
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4                                                      y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7                (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7                                            8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3
4,6(38 оценок)
Ответ:
Strummer
Strummer
11.10.2021
Раскрываем знак модуля по определению
1)если 2х²-4≥0, |2x²-4|=2x²-4
Уравнение принимает вид
2x²-4=3x-3
2x²-3x-1=0
D=9+8=17
x₁=(3-√17)/4
x₂=(3+√17)/4
Проверяем будет ли выполняться условие
2х²-4≥0⇔2(х²-2)≥0   х∈(-∞;-√2]U[√2;+∞)
Так как  (3-√17)/4 <0, то сравним это число с -√2
Пусть
(3-√17)/4 > -√2
или
3 - √17 >- 4√2
3+4√2>√17 - верно
Значит х₁ не является корнем

Так как  (3+√17)/4 >0, то сравним это число с √2
Пусть
(3+√17)/4 > √2
или
3 + √17 > 4√2
Возведём в квадрат
9+6√17+17>14·2
6√17>28-26 -  верно
Значит х₂ является корнем уравнения и принадлежит промежутку [√2;+∞)

2) если 2х²-4<0,  то |2x²-4|=-2x²+4
-2х²+4=3х-3
или
2x²+3x-7=0
D=9+56=65
x₃=(-3-√65)/4
x₄=(-3+√65)/4
Проверяем  выполняется ли условие
2х²-4<0
или 
-√2 < x < √2
Так как х₃ < 0, то сравниваем х₃ с -√2
Пусть
(-3-√65)/4 > -√2
или
-3 - √65 > -4√2,
4√2> 3 + √65 - верно, значит  х₃∉(-√2;√2) и не является корнем уравнения
Так как х₄ > 0, cравниваем х₄ с √2
Пусть
(-3+√65)/4 <√2
или
-3 + √65 < 4√2,
√65 < 4√2+ 3  - верно, значит  х₄∈(-√2;√2) и  является корнем уравнения
ответ.
x=(3+√17)/4
x=(-3+√65)/4
4,4(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ