Провідні тканини рослин — тканини, основною функцією яких є проведення по рослині води та розчинених у ній органічних та неорганічних речовин. Провідні тканини рослин розвиваються з прокамбію і камбію й утворюють систему, що пов'язує всі органи рослини. Високодиференційовані провідні тканини є лише у так званих судинних рослин; у мохоподібних та нижчих рослин їх немає. Найскладніше побудована система провідних тканин у покритонасінних.
Провідні тканини рослин поділяються на флоему та ксилему. Ксилема — транспорт води і мінеральних солей. Флоема — тканина, що транспортує від листків до кореня воду і органічні речовини.
Ксилема — механічна тканина, що поділяється на судини і трахеїди. Судини — довгі пустотілі трубки утворені з вертикального ряду паренхімних клітин. Трахеїди — видовжені мертві клітини без цитоплазми. Флоема — механічно спеціалізована тканина. Включає ситовидні трубки — вертикальний ряд видовжених живих клітин з целюлозною оболонкою, на поперечних стінках багато отворів перфорацій.
Провідні тканини рослин разом з механічними тканинами утворюють судинно-волокнисті пучки.
Провідні елементи флоеми:
ситовидні клітини
ситоподібні трубки + клітини супутники
Механічні елементи:
луб'яні волокна
Паранхімні елементи:
луб'яна паренхіма.
Забезпечує резервування речовин.
Объяснение:
Я первый зделай лутчым ответом
Дано:A-красный цвет
a-белый цвет
Найти:F²-?
Решение:P ж.AA X м.aa
G ж.A м.a
F¹ Aa-красный цвет
P ж.Aa X м.aa
G ж.A a м.a
F² Aa-красный цвет
aa-белый цвет
2)Дано:A-мохнатость
a-гладкая шерсть
Найти:F¹-?
Решение:P ж.AA X м.aa
G ж.A м.a
F¹ Aa-мохнатые
3)Дано:A-серый цвет
a-чёрный цвет
Найти:F¹-?
Решение:P ж.Aa X м.aa
G ж.A a м.a
F¹ Aa-серый цвет
aa-чёрный цвет
4)Дано:A-мохнатость
a-гладкая шерсть
Найти:F¹-?
Решение:P ж.AA X м.Aa
G ж.A м.A a
F¹AA-мохнатый
Aa-мохнатый
5)Дано:A-красная окраска
a-белая окраска
Найти:F²-?
Решение:P ж.AA X м.aa
G ж.A м.a
F¹ Aa-красная окраска
P ж.Aa X м.aa
G ж.A a м.a
F² Aa-красная окраска
aa-белая окраска
ответ 1:два типа гамет-A и a
ответ 2:два генотипа-Aa и aa
ответ 3:Ни одной доминантой гомозиготы не было получено
ответ 4:Ни одного гомозиготного во 2-ом поколении не было
ответ 5:Все с генотипом Aa
Г. Менделю принадлежит открытие явлений дискретной наследственности и ее законов. Это открытие заложило основы генетики — науки о наследственности и изменчивости организмов. Установление принципа дискретной наследственности и ее законов наложило печать на все развитие биологии XX в.
Г. Мендель внес в генетику количественный метод и принципы теории вероятности. Он показал, что биологические законы общего значения допускают функциональные выражения, они могут быть выражены математически. Язык алгебры, который раскрыл перед Менделем законы расщепления в их обобщенной форме, явился первым шагом в современном математическом анализе проблем наследственности.
Функциональное выражение законов расщепления позволило использовать их для предсказаний хода расщепления, которые оправдываются с поразительной точностью. Мендель в своей работе сам сделал несколько таких предсказаний, часть из них была получена им самим, а часть была доказана уже в XX в.
Исходя из поведения гибридов при их скрещивании, Мендель предсказал, что их зародышевые клетки получат в половине случаев один ген и в другой половине — другой ген из пары аллелей. Его эксперимент с обратным скрещиванием точно доказал правоту предсказания. Затем в XX в. изучение мейоза раскрыло, что этому явлению есть причинное объяснение на основе поведения гомологов в паре хромосом. Г. Мендель показал, что число генотипов при сложном расщеплении во втором поколении составляет 3n. Это предсказание было положено в основу громадного количества опытов в XX в., и какой бы сложности случай ни был изучен, предсказание оправдывалось с поразительной точностью. Эта реализация предсказаний была следствием всеобщности принципов, открытых Менделем на горохе. Эта общность вытекает из единства поведения хромосом при образовании половых клеток и из осуществления всех вероятностей встреч разных классов гамет друг с другом, которые всегда имеют место при наличии достаточно большого числа случаев.
Т. Мендель обосновал идею о наследственных факторах и разработал для них знаковую модель на базе использования идей математической статистики. В результате центральный пункт современной молекулярной генетики — проблема гена берет свои прямые истоки из открытия Менделя. Мендель строит весь свой анализ на базе введенного им метода генетического анализа. Он кропотливо во всех опытах изучает, в какой мере генотип каждого класса растений отвечает гипотезе. Апогей этого метода достигается в экспериментах по скрещиванию гибридов с рецессивным гомозиготом (анализатором), когда Мендель в прямом опыте раскрывает наследственные структуры гамет гибридов. Таким образом, основа основ генетики, ее генетический метод, который раскрыл законы наследования, позволил, сочетаясь с цитологией, войти в глубины генетического строения хромосом, а затем, войдя в комплекс с физикой, химией и математикой, создал современное учение о записи генетической информации и, наконец, раскрыл тайну строения гена. Все это находит свои прямые истоки в работе Г. Менделя. Мендель доказал важнейшее положение, что оплодотворение у растений базируется на слиянии одной яйцеклетки с одним спермием. Мендель на примере группы самоопыляющихся растений впервые провел исследования по генетике популяций.
Все это создало работе Г. Менделя положение исходного пункта в теоретическом анализе явлений наследственности.
В наши дни генетика составляет сердцевину всей биологии. Исследования в биологии, посвященные сущности жизни, имеют громадное значение для сельского хозяйства и медицины. Так же как в центре атомной науки стоит изучение глубин атома, его строения из элементарных частиц и сил, обеспечивающих их взаимодействие, так в центре современной генетики стоит изучение глубин гена, его химических и физических свойств как биологической единицы наследственности. Мендель обосновал алгебру биологии, обозначив отдельные гены буквами. В его знаковой системе это были буквы A, В, С и др.
Объяснение: