Решение, а) По условию АС = AD и ВС = = BD. Отрезок АВ — общая сторона треугольников ABC и ABD (рис.75, на этом рисунке точка В лежит на луче АО; случай, когда точка В лежит на продолжении луча АО, рассматривается аналогично). Поэтому ААВС = AABD по третьему признаку равенства треугольников. Отсюда следует, что ZADB = ZACB.
6) Из равенства треугольников ABC и ABD следует также, что ZCAB = ZDAB. Это означает, что АО — биссектриса равнобедренного треугольника ACD. Следовательно, АО — также медиана треугольника ACD, т. е. DO = ОС.
Решение, а) Построим биссектрису угла А (как это сделать, описано в п. 23 учебника) и обозначим буквой К точку пересечения построенной биссектрисы со стороной ВС. Отрезок АК — искомая биссектриса треугольника ABC.
б) Построим середину отрезка АС (как это сделать, описано в п. 23) и обозначим ее буквой М. Проведем отрезок ВМ. Этот отрезок и есть искомая медиана треугольника ABC.
в) Построим прямую, проходящую через точку С и перпендикулярную к прямой АВ (см. задачу 153). Обозначим буквой Н точку пересечения построенной прямой и прямой АВ. Отрезок СН — искомая высота треугольника ABC.