М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
76938
76938
04.04.2020 17:01 •  Другие предметы

Метод оценки акций, предложенный Модильяни и Миллером, получил в экономической литературе название «_ ММ»

👇
Ответ:
Денис29964
Денис29964
04.04.2020

приставка - при

корень - чал.

4,5(76 оценок)
Ответ:
sirentuhfatull
sirentuhfatull
04.04.2020

при-приставка

чал-корень

однокоренное слово ОТчалить 

 

 

 

думаю так

4,5(77 оценок)
Открыть все ответы
Ответ:
diiann
diiann
04.04.2020

всё

Объяснение:

Вариант 1:

1. (xVy)↔(y↓⌐x),

(x│⌐y)→(z+⌐(xy));

2. x→(y+z),

(x→y)+(x→z);

3. (xV⌐y)→(⌐z+⌐x);

4. f(0,1,0)=f(1,0,0)=f(1,0,1)=0;

5. f=(1101 1101 0011 0011);

6. J={xVy, ⌐x+y}.

Вариант 2:

1. (x↔⌐y)V(y↓x),

((x→⌐y)│⌐z)+⌐(xy);

2. x│(y→z),

(x│y)→(x│z);

3. ⌐((xV⌐y)→(z+⌐x));

4. f(0,1,1)=f(1,0,0)=f(1,1,0)=0;

5. f=(1111 1100 1011 1011);

6. J={x→y, ⌐x⌐y}.

Вариант 3:

1. (xV⌐y)↔(y↓x),

((x│⌐y)→z)+⌐(xy);

2. x(y+z),

xy+xz;

3. (⌐xV⌐y)→ ⌐(z+x);

4. f(0,0,0)=f(0,0,1)=f(1,0,1)=f(1,1,1)=1;

5. f=(1110 0101 0011 0101);

6. J={x↔y, ⌐x│⌐y}.

Вариант 4:

1. (x↔⌐y)V(y↓x),

((x→⌐y)│⌐z)+⌐(xy);

2. x(y+z),

xy+xz;

3. (xV⌐y)→ ⌐(z↔⌐x);

4. f(0,0,1)=f(1,1,1)=f(1,1,0)=0;

5. f=(1101 0011 1101 0011);

6. J={x+y, ⌐xVy}.

Вариант 5:

1. (xV⌐y)→(y+x),

((x↔⌐y)│⌐z)↓⌐(xy);

2. x(y→z),

xy→xz;

3. ⌐((xV⌐y)→(z↔⌐x));

4. f(0,0,0)=f(1,1,1)=f(1,1,0)=0;

5. f=(1100 1011 1111 1011);

6. J={⌐x→y, x⌐y}.

Вариант 6:

1. (x+⌐y)↔(y│x),

((x↓y)↔⌐z)V⌐(xy);

2. x(y↔z),

xy↔xz;

3. ⌐((x│⌐y)+(z→⌐x));

4. f(0,0,1)=f(0,1,1)=f(1,1,0)=f(1,1,1)=1;

5. f=(0101 0101 1110 0011);

6. J={⌐x↔y, x│⌐y}.

Вариант 7:

1. (xV⌐y)↓(y→x),

((x│⌐y)↔⌐z)+⌐(xy);

2. x(y│z),

xy│xz;

3. ⌐((z→x)↔(y│x));

4. f(0,0,0)=f(1,0,1)=f(1,1,1)=0;

5. f=(0011 0011 1101 1101);

6. J={x+⌐y, ⌐xVy}.

Вариант 8:

1. (x+⌐y)→(y↓x),

((x│⌐y)V⌐z)↔⌐(xy);

2. xV(y→z),

(xVy)→(xVz);

3. (x│⌐y)+(⌐z→x);

4. f(1,0,1)=f(0,1,0)=f(1,1,1)=0;

5. f=(1011 1011 1100 1111);

6. J={x→⌐y, ⌐xy}.

Вариант 9:

1. ⌐x↔(y→(⌐y↓x)),

((⌐x│y)V⌐z)+⌐(xy);

2. xV(y│z),

(xVy)│(xVz);

3. (⌐z→x)↔(⌐x│y);

4. f(1,0,0)=f(1,1,0)=f(0,1,1)=f(0,1,0)=1;

5. f=(0101 0011 0101 1110);

6. J={x↔⌐y, ⌐x│y}.

Вариант 10:

1. x↓(⌐y→(y↓x)),

x+(⌐yV⌐z↔⌐(xy));

2. xV(y↔z),

(xVy)↔(xVz);

3. (z→x)+(x│⌐y);

4. f(0,1,1)=f(1,0,0)=f(1,0,1)=0;

5. f=(0011 1101 0011 1100);

6. J={⌐x+⌐y, xV⌐y}.

Вариант 11:

1. x↔(⌐y→(y+x)),

x│(⌐yV⌐z↓⌐(xy));

2. x+(y↔z),

(x+y)↔(x+z);

3. ((x↓y)→z)+y;

4. f(0,0,1)=f(1,0,0)=f(1,1,0)=0;

5. f=(1011 1111 1011 1100);

6. J={xy, ⌐x→⌐y}.

Вариант 12:

1. x→(⌐y│(y+x)),

x↔(⌐yV⌐z↓⌐(xy));

2. x+(y→z),

(x+y)→(x+z);

3. ⌐((x│y)→z)+y;

4. f(0,0,1)=f(0,1,1)=f(1,1,1)=0;

5. f=(0011 1110 0101 0101);

6. J={x│y, ⌐x↔⌐y}.

Вариант 13:

1. x↓(⌐y→(yVx)),

x│(⌐y↔⌐z+⌐(xy));

2. x+(y│z),

(x+y)│(x+z);

3. ⌐((x↓y)→⌐z)+y);

4. f(0,0,0)=f(0,0,1)=f(1,1,0)=0;

5. f=(0011 0011 1100 1111);

6. J={⌐x+y, ⌐xV⌐y}.

Вариант 14:

1. x+(⌐y→(y↔x)),

x↓(⌐yV⌐z│⌐(xy));

2. x↓(y↔z),

(x↓y)↔(x↓z);

3. (⌐(x↓y)→⌐z)↔y;

4. f(0,0,0)=f(0,1,0)=f(1,1,1)=0;

5. f=(1100 0101 0011 0011);

6. J={xy, x→⌐y}.

Вариант 15:

1. (x↓y)│(yV⌐x),

(x↔⌐y)+(z→⌐(xy));

2. x│(y+z),

(x│y)+(x│z);

3. ⌐(((x↓y)→⌐z)↔y);

4. f(0,0,0)=f(0,0,1)=f(1,0,0)=f(1,1,0)=1;

5. f=(0010 0111 1010 1101);

6. J={xVy, ⌐x↔y}.

Вариант 16:

1. (x│y)→(y+⌐x),

(x⌐y)V(z↔⌐(x↓y));

2. x→(y│z),

(x→y)│(x→z);

3. (⌐(x↓y)→⌐z)+y;

4. f(1,0,1)=f(0,1,1)=f(0,1,0)=0;

5. f=(0011 1111 0011 1100);

6. J={x+y, xV⌐y}.

Вариант 17:

1. (xVy)→(y↓⌐x),

(x│⌐y)↔(z+⌐(xy));

2. x→(y↔z),

(x→y)↔(x→z);

3. ⌐((xVy)→(⌐z↔y));

4. f(1,0,0)=f(0,1,1)=f(0,1,0)=0;

5. f=(0101 0011 1100 0011);

6. J={x⌐y, ⌐x→⌐y}.

Вариант 18:

1. (xVy)↓(y→⌐x),

(x+⌐y)→(z│⌐(xy));

2. xV(y+z),

(xVy)+(xVz);

3. ⌐((x│y)+(⌐z→y));

4. f(0,0,1)=f(0,1,1)=f(1,0,0)=f(1,0,1)=1;

5. f=(0111 1101 0010 1010);

6. J={x↓⌐y, ⌐x↔⌐y}.

Вариант 19:

1. (x+y)│(y↓⌐x),

(x↔⌐y)→(zV⌐(xy));

2. x↓(y+z),

(x↓y)+(x↓z);

3. ⌐(((x↓y)→z)↔x);

4. f(1,0,0)=f(0,0,1)=f(0,1,1)=0;

5. f=(1111 1100 0011 0011);

6. J={x+⌐y, xVy}.

Вариант 20:

1. xy↔(y↓⌐x),

(x→⌐y)│(z+⌐(xVy));

2. x↔(y+z),

(x↔y)+(x↔z);

3. (⌐xVy)→⌐(⌐z↔y);

4. f(0,0,1)=f(0,1,1)=f(1,1,0)=0;

5. f=(0011 0011 0101 1100);

6. J={x→y, ⌐xy}.

Вариант 21:

1. x↓(⌐y+(y→⌐x)),

xV(⌐y│⌐z+⌐(xy));

2. x→(y↓z),

(x→y)↓(x→z);

3. ⌐(((x↔y)│⌐z)+y);

4. f(0,0,0)=f(0,0,1)=f(1,0,0)=f(1,1,0)=0;

5. f=(1110 1001 0111 0001);

6. J={⌐x↓y, ⌐x↔⌐y}.

Вариант 22:

1. x│(⌐y+(yVx)),

x→(⌐y↓(⌐z↔⌐(xy)));

2. x↓(y│z),

(x↓y)│(x↓z);

3. ⌐(x↓y)→(z↔⌐y);

4. f(0,1,1)=f(1,0,0)=f(1,0,1)=1;

5. f=(0001 0011 1100 1110);

6. J={⌐x+⌐y, ⌐xVy}.

Вариант 23:

1. x+(⌐y→(y↔⌐x)),

x↓(⌐y│(zV⌐(xy)));

2. x↔(y│z),

(x↔y)│(x↔z);

3. ⌐(((x↓y)→⌐z)↔y);

4. f(0,0,1)=f(1,0,0)=f(1,1,0)=1;

5. f=(0011 1100 0011 0101);

6. J={⌐x⌐y, ⌐x→y}.

Вариант 24:

1. x↔(y(⌐y→x)), xV(⌐y+(z↓⌐(x│y)));

2. x→(y↓z),

(x→y)↓(x→z);

3. (⌐(x↔y)→⌐z)│y;

4. f(0,1,1)=f(0,1,0)=f(1,0,1)=f(1,1,1)=1;

5. f=(0011 1101 0010 1100);

6. J={xV⌐y, ⌐x↔y}.

4,5(10 оценок)
Ответ:
Alexa385
Alexa385
04.04.2020

ответ:Поскольку Токтар Аубакиров совершил космический полёт, уже имея звание Героя Советского Союза[3], а повторные награждения «Золотой Звездой» с 1988 года были отменены, за свой единственный полёт в космос он был награждён орденом Октябрьской Революции.

После распада СССР живёт в Казахстане. Находится на государственной службе[уточнить]. С апреля 1992 года — первый заместитель председателя Государственного комитета по обороне Республики Казахстан президента Казахстана по освоению космоса.

Перед избранием в парламент — генеральный директор Национального аэрокосмического агентства Республики Казахстан в городе Алма-Ате. 24 октября 2009 года Токтар Аубакиров, первый казахский космонавт, выступая на съезде новой оппозиционной политической силы — Общенациональной социал-демократической партии «Азат» — в Алма-Ате, так пояснил своё вхождение в объединённую партию оппозиции:

«Хочу считать, что сегодня наступил день, о котором мечтал простой народ. Сегодня — исторический день. Многие люди ждали, когда объединятся две ведущие оппозиционные партии Казахстана. Я долго ждал этого момента. Это было моей мечтой. Я долго ждал появления народной партии, чтобы вступить туда. Я долго искал свою партию. И вот я её наконец нашёл».

4,4(63 оценок)
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ