Автобус, отъезжая от остановки, проехал путь s = 1 м за вторую секунду. определите, какой s проедет этот автобус через 15 секунд движения, если движение равноускоренное.
осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.
в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени t = 0 ключ к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.
рис. 10.10.
запишем для новой схемы 10.10.b уравнение правила напряжений кирхгофа:
.
разделяем переменные и интегрируем:
пропотенцировав последнее уравнение, получим:
.
постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника t = 0, ток в катушке i(0) = i0.
отсюда следует, что c = i0 и поэтому закон изменения тока в цепи приобретает вид:
. (10.7)
график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя t = ¥.
рис. 10.11.
вы и сами теперь легко покажете, что при включении источника (после замыкания ключа к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению i0 (см. рис. 10.
. (10.8)
но вернёмся к первоначальной размыкания цепи.
мы отключили в цепи источник питания (разомкнули ключ к), но ток — теперь в цепи 10.8.b — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?
ток поддерживается электродвижущей силой самоиндукции e = . за время dt убывающий ток совершит работу:
da = eси×i×dt = –lidi.
ток будет убывать от начального значения i0 до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:
. (10.9)
совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.
с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?
опыт даёт ответ на эти вопросы: энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.
несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:
l = m0n2sl (10.5) — индуктивность;
b0 = m0ni0 (9.17) — поле соленоида.
эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:
. (10.10)
здесь v = s×l — объём соленоида (магнитного
энергия катушки с током пропорциональна квадрату вектора магнитной индукции.
разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:
[]. (10.11)
это выражение похоже на выражение плотности энергии электростатического поля:
.
обратите внимание: в сходных уравнениях, если e0 — в числителе, m0 — непременно в знаменателе.
зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме v поля.
локальная плотность энергии в заданной точке поля:
Задание #1 Вопрос: В Исландии и Франции морской компас начали использовать в 12-13 веках. Магнитный брусок закрепляли в центре деревянного креста, затем эту конструкцию помещали в воду, и крест, повернувшись, устанавливался в направлении север-юг. Каким полюсом магнитный брусок повернётся к северному магнитному полюсу Земли?
3) Южным
Задание #2 Вопрос: Какое вещество совсем не притягивается магнитом?
2) Стекло
Задание #3 Вопрос: Внутри стенового покрытия проложен изолированный провод. Как обнаружить местонахождения провода не нарушая стенового покрытия?
4) Поднести к стене магнитную стрелку. Проводник с током и стрелка будут взаимодействовать.
Задание #4 Вопрос: Можно ли пользоваться компасом на Луне для ориентирования на местности?
4) Нельзя
Задание #5 Вопрос: При каком условии магнитное поле появляется вокруг проводника? 1) Когда в проводнике возникает электрический ток.
Задание #6 Вопрос: Магнитные линии - это воображаемые линии, вдоль которых расположились бы маленькие
1) магнитные стрелки, помещенные в магнитном поле
Задание #7 Вопрос: Если в разных точках магнитного поля на магнитную стрелку действуют одинаковые силы, то такое поле называют
3) однородным
Задание #8 Вопрос: Магнит создает вокруг себя магнитное поле. Где будет проявляться действие этого поля наиболее сильно? 4) Около полюсов магнита.
Задание #9 Вопрос: Что следует сделать, чтобы стержень из закаленной стали намагнитился, т.е. сам стал постоянным магнитом?
1) Поместить в сильное магнитное поле
Задание #10 Вопрос: Какой полюс появится у заостренного конца гвоздя, если к его шляпке приблизить южный полюс магнита?
осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.
в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени t = 0 ключ к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.
рис. 10.10.
запишем для новой схемы 10.10.b уравнение правила напряжений кирхгофа:
.
разделяем переменные и интегрируем:
пропотенцировав последнее уравнение, получим:
.
постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника t = 0, ток в катушке i(0) = i0.
отсюда следует, что c = i0 и поэтому закон изменения тока в цепи приобретает вид:
. (10.7)
график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя t = ¥.
рис. 10.11.
вы и сами теперь легко покажете, что при включении источника (после замыкания ключа к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению i0 (см. рис. 10.
. (10.8)
но вернёмся к первоначальной размыкания цепи.
мы отключили в цепи источник питания (разомкнули ключ к), но ток — теперь в цепи 10.8.b — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?
ток поддерживается электродвижущей силой самоиндукции e = . за время dt убывающий ток совершит работу:
da = eси×i×dt = –lidi.
ток будет убывать от начального значения i0 до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:
. (10.9)
совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.
с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?
опыт даёт ответ на эти вопросы: энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.
несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:
l = m0n2sl (10.5) — индуктивность;
b0 = m0ni0 (9.17) — поле соленоида.
эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:
. (10.10)
здесь v = s×l — объём соленоида (магнитного
энергия катушки с током пропорциональна квадрату вектора магнитной индукции.
разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:
[]. (10.11)
это выражение похоже на выражение плотности энергии электростатического поля:
.
обратите внимание: в сходных уравнениях, если e0 — в числителе, m0 — непременно в знаменателе.
зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме v поля.
локальная плотность энергии в заданной точке поля:
.
значит, dw = wdv и энергия в объёме v равна:
.