частоту обозначим буквой n (ты пиши её так, как привык)
n=1/T, где T-период обращения
T=2пи(Rз+h)/v, (0) где v- линейная cкорость спутника
a=v^2/(Rз+h) отсюда v=корень из(a*(Rз+h) (1)
ускорение свободного падения на орбите a=GM/(Rз+h) (2), где M-масса спутника, G-гравитационная постоянная.
ускорение свободного падения на поверхности g=GM/Rз (3)
Из (2) и (3)=> a=gRз/(Rз+h) (4)
из (1) и (4)=> v=корень из (gRз) (5)
Из (0) и (5)=> T=2пи(Rз+h)/корень из(gRз)
Отсюда частота n=корень из(gRз)/(2пи(Rз+h))
ответ: n=gRз/ корень из( 2пи(Rз+h) )
Наверное пружин у автомобиля 4 (по числу колёс). Тогда в среднем на каждую приходится по 1/4 веса, то есть по 250 кг * g = 2500 Н.
Тогда одна пружина, имеющая k=2кН/см = 200 кН/м = 200000 Н/м обожмётся на x=F/k = 2500 / 200000 = 0,0125 м (или 1,25 см, если угодно в сантиметрах).
В принципе, наверное энергию обжатых пружин вычислять не обязательно, потому что она будет равна потенциальной энергии "парящего" автомобиля, пока он ещё не просел на пружинах. Ибо закон сохранения энергии как бы работает.
Е = mgx = 1000 * 10 * 0,0125 = 125 Дж.
Думаю что так. Цифра что-то навскидку получилась маловатой, смущает. Хотя ну не знаю. В общем, в итоге не уверен в ответе, может ещё кто решит, тогда сверимся.