В качестве выпрямительных диодов используют сплавные эпитаксиальные и диффузионные диоды, выполненные на основе несимметричного p–n–перехода.
В выпрямительных диодах применяется также p–n–переходы, использование которых позволяет снизить напряженность электрического поля в p–n–переходе и повысить значение обратного напряжения Uобр, при котором начинается пробой.
Для этой цели иногда используют p+–p–или n+–n–переходы.
Выпрямительные диоды делятся на низкочастотные (силовые), используемые в основном в выпрямительных источниках питания, и высокочастотные (маломощные).
1. Максимально допустимое обратное напряжение диода Uобр. max – значение напряжения, приложенного в обратном направлении, которое диод может выдержать в течение длительного времени без нарушения его работо В).
2. Средний выпрямляемый ток диода Iвп.ср – среднее за период значение выпрямляемого постоянного тока, протекающего через диод (100 мА ÷ 10 А).
3. Импульсный прямой ток диода Iпри – пиковое значение импульса тока при заданной максимальной длительности, скважности и формы импульса.
4. Средний обратный ток диода Iобр. ср – среднее за период значение обратного тока (доли мкА ÷ несколько мА).
5. Среднее прямое напряжение диода при заданном среднем значении прямого тока Uпр. ср. (доли В).
6. Средняя рассеиваемая мощность диода Рср. – средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях (сотни мВт – десятки и более Вт).
Частица, ускоренная разностью потенциалов 100В, движется в магнитном поле с индукцией 0,1 Тл по спирали радиуса 6,5 см с шагом 1 см. Найти отношение заряда частицы к ее массе. Пример решения задачи на тему движение заряда в магнитном поле по спирали
Электрон влетает со скоростью 1 Мм/с в магнитное поле под углом 60 градусов к силовым линиям. Напряженность магнитного поля 1,5 кА/м. Найти радиус и шаг спирали, по которой будет двигаться электрон.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Электрон движется в магнитном поле с индукцией 100 мкТл по спирали с радиусом 5 см и шагом 20 см. Найти скорость электрона.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Электрон, разогнанный разностью потенциалов 800В, движется в магнитном поле с индукцией 4,7 мТл по спирали с шагом 6 см. Найти радиус спирали.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Протон, разогнанный разностью потенциалов 300В, влетает в магнитное поле под углом 30 градусов к силовым линиям. Индукция магнитного поля 20 мТл. Найти радиус и шаг спирали, по которой будет двигаться протон.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Электрон, разогнанный разностью потенциалов 6 кВ, влетает в магнитное поле под углом 30 градусов к силовым линиям. Индукция магнитного поля 13 мТл. Найти радиус и шаг спирали, по которой будет двигаться электрон.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Альфа-частица, разогнанная разностью потенциалов U, влетает в магнитное поле под углом к силовым линиям. Индукция магнитного поля 50 мТл. Hадиус и шаг спирали - траектории частицы - соответственно 5 см и 1 см. Определить разность потенциалов U.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Электрон влетает со скоростью 1 Мм/с в магнитное поле под углом 30 градусов к силовым линиям. Индукция магнитного поля 1,2 мТл. Найти радиус и шаг спирали, по которой будет двигаться электрон.
Пример решения задачи на тему движение заряда в магнитном поле по спирали
Электрон влетает со скоростью 6 Мм/с в магнитное поле под углом 30 градусов к силовым линиям. Индукция магнитного поля 1,0 мТл. Найти радиус и шаг спирали, по которой будет двигаться электрон.