Відповідь:ответ: 195 м
Объяснение:
тело свободно падало и последние 30 м пути за 0,5 с . С какой высоты падало тело ?
Пусть
h - высота с которой падало тело
s - путь который тело до последних 0,5 с падения
s' - путь который тело за последние 0,5 с падения
h = s + s'
Будем считать то что тело падало с начальной скоростью равной 0 м/с , тогда
( gt² ) / 2 = ( g ( t - 0,5 )² ) / 2 + 30
5t² = 5( t - 0,5 )² + 30 | ÷ 5
t² = ( t - 0,5 )² + 6
t² = t² + 0,25 - t + 6
t² - t² - 0,25 + t - 6 = 0
t - 6,25 = 0
t = 6,25 c
h = ( gt² ) / 2
h = ( 10 * 6,25² ) / 2 ≈ 195 м
Детальніше - на -
Пояснення:
Электрический ток в жидкостях
Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом проводить ток.
В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.
Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду через электролит
Электрохимический эквивалент вещества - табличная величина.
Второй закон Фарадея:
Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.
Электрический ток в металлах
При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.
Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.
Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.
Применение электрического тока в металлах
Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.
Прохождение электрического тока через газ называется газовым разрядом.
В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".
Между электродами сварочного аппарата возникает дуговой разряд.
Дуговой разряд горит в ртутных лампах - очень ярких источниках света.
Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!
Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.
Электрический ток в вакууме
А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.
Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.
Задача 1
Дано:
m=40кг
h=1м80см(1.8м)
Найти:A=?
Анализ:
A=F*h
F=mg
F=40кг*10Н/кг=400Н
A=400*1.8=720Дж
ответ:А=720Дж
Задача 2
Дано:
m=12кг
h=15м
Найти:A=?
Анализ:
A=F*h
F=mg
F=12кг*10н/кг=120Н
А=120Н*15м=1800Дж
ответ: 1800Дж
Задача 3
Для задачи №3 нужна масса индивидуального человека,но в условии не был упомянут вес,поэтому, учитывая, что это программа 7 класса,я использую в качестве массы среднестатистический вес 7 классника (45 кг)
Дано:
t=1 мин
h=3 м-1этаж 9м-3 этажа )
m=45кг
N=?
Си
60сек
Анализ:
N=A/t
A=Fh
F=mg
F=45кг*10Н/кг=450Н
A=450Н*9м=4050Дж
N=4050Дж/60=67.5Вт
ответ:N=67.5 Вт
Воде бы так!