Объективом проекционного прибора служит тонкая линза с фокусным расстоянием 10 см. Изображение предмета получено на расстоянии 24мм. см от объекта. На какое расстояние переместится изображение, если предмет отодвинуть еще на 21 мм от объектива? Условие: F = 24 мм; f = 21мм см; Δd = 20 см; Определить Δ f - ?Решение. Используем формулу линзы: 1/F = 1/d +1/f ; Определяем, на каком расстоянии находится предмет d = fF/(f –F); Вычисляем (можно и в см): d = 24*21/(24 -21) = 168(мм); Теперь, применяя всё ту же формулу линзы, находим, на каком расстоянии будет изображение, если предмет расположим на расстоянии ; d + Δd = 168 + 20 = 188 (мм); f = dF/(d – F); f = 24*21/(24– 21) = 168мм. Находим, на какое расстояние передвинулось изображение: Δ f = f (2) – f (1) =
На участке 2 тело движется под действием тех же трех сил, только теперь осб х - горизонтальная, у - вертикальная. Таким образом, вес направлен вертикально вниз и его х-составляющая равна 0. По 2 закону нюьтона, учитвая, что вес полностью уравновешен силой реакции опоры, получим: Fтр=μ*N=μ*m*g=m*a2, где a2-ускорение (замедление) на участке 2. Отсюда :а2=μ*g. Движение на этом участке равнозамедленное. Начальная скорость известна, конечная - равна 0: 0=V-a2*t, отсюда: t=V/a2=V/(μ*g). Это время, пройденное телом до остановка на участке 2. Расстояние в случае равнозамедленного движения:L2=V*t-a2*t*t/2=V*V/(μ*g)-μ*g*(V/(μ*g)*(V/(μ*g)/2. Упростив выражение получим: L2=V*V/(2*μ*g). Подставим найденное для участка 1 выражение конечной скорости V: L2=2*L*g*(sin(alfa)-μ*cos(alfa))/(2*μ*g)=L*(sin(alfa)-μ*cos(alfa))/μ=h*(sin(alfa)-μ*cos(alfa))/(μ*sin(alfa)). В конечном преобразовании использовано выражение для длины наклонного пути, полученное при рассмотрении участка 1.