М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gogamer228
gogamer228
30.12.2021 23:42 •  Физика

Насекомое ползёт вдоль главной оптической оси собирающей линзы с постоянной скоростью 2,5 м / с. Оптическая сила линзы 2,5 дптр. Мнимое изображение оно будет иметь:

1. 20 с

2. 10 с

3. 16 с

4. 5 с

👇
Открыть все ответы
Ответ:
Дарья22031
Дарья22031
30.12.2021

"ПЛАВНЫЙ ПОВОРОТ"

Можно сказать, что это не сказка, а воспоминание о  жизни наших первобытных Землян.

Началось с того, что они двигались прямолинейно. Быстро или медленно, вперёд или назад. В результате всегда возвращались в свою пещеру. Тормозить они всё-таки могли и, поэтому лоб свой не разбивали.

Оказалось, что нужно поворачивать на поперечную дорогу.

Если перекресток перпендикулярная улица - скорость резко меняет направление.  (рисунок в приложении) . Такое могут сделать пешеходы на малой скорости.

Но приехали автомобилисты - им медленно ехать не хочется. И стали делать повороты на улицах с большим (и не очень большим) радиусом.

Это уравнение окружности - второго порядка.Скорость остается постоянной, а ускорение меняет направление.

Автомобилистам легко - какой хочешь радиус выбирай, а вот трамвай по рельсам едет. Он не может даже чуть-чуть изменить трассу и вот тут стали укладывать  повороты по уравнению третьей степени. Теперь и ускорение плавно изменяется и скорость плавно изменяется и направление плавно изменяется.

А кто придумывал такие разные решения для строительства дорог - УЧЁНЫЕ.   Главное в этом хорошие знания и математики и физики.

Это, конечно, не сказка, а быль.


Придумайте сказку про криволинейное движение
4,6(88 оценок)
Ответ:
wwwlavor
wwwlavor
30.12.2021

Объяснение:

Кинематические характеристики

Вращение характеризуется углом  измеряющимся в градусах или радианах, угловой скоростью {\displaystyle \omega ={\frac {d\varphi }{dt}}}\omega ={\frac  {d\varphi }{dt}} (измеряется в рад/с) и угловым ускорением {\displaystyle \epsilon ={\frac {d^{2}\varphi }{dt^{2\epsilon ={\frac  {d^{{2}}\varphi }{dt^{{2 (единица измерения — рад/с²).

При равномерном вращении ({\displaystyle T}T — период вращения),

Частота вращения — число оборотов в единицу времени.

{\displaystyle \nu ={1 \over T}={\omega \over 2\pi },}{\displaystyle \nu ={1 \over T}={\omega  \over 2\pi },}

Период вращения — время одного полного оборота. Период вращения {\displaystyle T}T и его частота {\displaystyle \nu }\nu  связаны соотношением {\displaystyle T=1/\nu }{\displaystyle T=1/\nu }.

Линейная скорость точки, находящейся на расстоянии {\displaystyle R}R от оси вращения

{\displaystyle v={2\pi \nu R}={2\pi R \over T},}{\displaystyle v={2\pi \nu R}={2\pi R \over T},}

Угловая скорость вращения тела — аксиальный вектор (псевдовектор).

{\displaystyle \omega ={2\pi \nu }={2\pi \over T}.}{\displaystyle \omega ={2\pi \nu }={2\pi  \over T}.}

Динамические характеристики

Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергию вращения можно записать в виде:

{\displaystyle E={\frac {\omega ^{2}J}{2}}={2\pi ^{2}\nu ^{2}J}.}{\displaystyle E={\frac {\omega ^{2}J}{2}}={2\pi ^{2}\nu ^{2}J}.}

В этой формуле момент инерции играет роль массы, а угловая скорость — роль скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы

{\displaystyle J=\int r^{2}dm.}{\displaystyle J=\int r^{2}dm.}

Момент инерции — физическая величина, мера инертности тела во вращательном движении. Характеризует распределение масс в теле. Различают осевой и центробежный момент инерции. Осевой момент инерции определяется равенством:

{\displaystyle J_{a}=\sum _{i=1}^{n}m_{i}r_{i}^{2},}{\displaystyle J_{a}=\sum _{i=1}^{n}m_{i}r_{i}^{2},}

где {\displaystyle m_{i}}m_i — масса, {\displaystyle r_{i}}r_{i} — расстояние от {\displaystyle i}i-й точки до оси

4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ