Е'к=Е'р на высоте 50 м
Объяснение:
Закон сохранения механической энергии.
На высоте 100 м в момент начала движения кинетическая энергия равна 0, т.к. скорость тела равна 0. Вся механическая энергия есть энергия потенциальная:
Итак тело с высоты 100 м летит вниз, Ek растет и становится равной Е'к, Ep уменьшается и становится равной E'p, Eu остается постоянной.
В первый момент времени
Еu=Ep+Ek=mgh+mV^2/2=mgh+0 ,эдесь
Eu - полная механическая энергия, Дж
Ek - кинетическая энергия, Дж
Ep - потенциальная энергия, Дж
m - масса тела, кг
V - скорость тела, м/с
h - высота подъема тела над уровнем условного нуля, м
g - ускорение свободного падения, м/с^2
В момент равенства энергий Ek'=Ep',
E'k+ E'p = Eu/2 + Eu/2 = Eu=mgh
E'k=E'p=Eu/2=mgh/2
И т.к в выражении mgh/2 с течением времени полета меняется только высота h, то и в момент "уравнивания" величин энергий высота изменится (уменьшится) в два раза.
Т.о. Е'к=Е'р на высоте h/2=100/2=50 (м).
Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10-5.
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H - (p2-p1)/(ρ·g) - = 8 - ((1-1)·105)/(1000·9,81) - 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
ответ:требуемая длина трубопровода составит 213,235 м.