Реальная колебательная система часто находится в среде, и на колеблющуюся материальную точку действует сила сопротивления. Начальная энергия тела постепенно уменьшается. В этом случае, как говорят, система совершает затухающие колебания.
Особенности затухания колебаний можно выяснить с уравнения динамики, составленного с учётом силы сопротивления среды. Последнюю при малых скоростях движения записывают как Fr = - rv = - rdv/dt где r – постоянная, называемая коэффициентом сопротивления (его трудно спутать с расстоянием, так как в последующих формулах речь идёт только о функции смещения x(t).
Вынужденные колебания.
Одним из важных вопросов является вопрос о результате внешнего периодического воздействия на систему с упругими свойствами. Основные выводы можно получить, решая уравнение динамики, записанное с учётом периодической внешней силы. Это есть дифференциальное уравнение второго порядка, линейное, с постоянными коэффициентами, неоднородное. Как известно, общее решение неоднородного уравнения представляет собой сумму x0(t) общего решения соответствующего однородного уравнения и какого-либо x1(t) частного решения неоднородного уравнения.
Общее решение однородного уравнения описывает затухающие колебания. Если нас интересуют моменты времени, то для таких моментов функция x0(t) стремится к нулю и остаётся только движение, описываемое частным решением (установившееся движение). В качестве этого частного решения разумно предположить функцию. Одной из важных характеристик колебательной системы является добротность – отношение амплитуды колебаний при резонансе к амплитуде статического смещения. Добротность показывает раскачки» системы.
зная диаметр шара, можно сразу вычислить радиус, и затем найти все остальные параметры сферы, такие как длина окружности, площадь поверхности и объем. радиус шара через диаметр равен его половине. r=d/2
длина окружности сферы через диаметр выглядит как его произведение на число π, поэтому можно вычислить ее напрямую, без производных формул. p=πd
чтобы найти площадь поверхности сферы через диаметр, нужно преобразовать ее формулу, подставив вместо радиуса одну вторую диаметра, тогда площадь поверхности будет равна произведению числа π на квадрат диаметра. s=4πr^2=(4πd^2)/4=πd^2
для того чтобы вычислить объем шара, необходимо возвести радиус в третью степень, умножив его на четыре трети числа π, поэтому вставив в формулу вместо радиуса половину диаметра, получим, что объем шара через диаметр равен v=4/3 πr^3=4/3 π(d/2)^3=(πd^3)/6