• по определению кпд: n = q/qзатр, где qзатр - затраченная теплота на нагрев куска меди (будем считать далее, что температура t2 не является температурой плавления меди)
• медь нагревается за счет горения угля. значит:
○ n = q/(q m1)
○ m1 = q/(n q)
• теплота q расходуется на нагрев куска меди: q = c m2 (t2 - t1) (1)
• далее эта же теплота q пойдет на плавление льда (его температура по условию 0 °с, поэтому плавление начнется сразу же): q = λ m3 (2)
• приравняв уравнения (1) и (2), находим:
○ t2 = t1 + ((λ m3)/(c m2))
• подставляем уравнение в выражение (1). получаем:
○ t1 = (q - λ m3)/(m2 - m1)
Объяснение:
Замечание: чтобы не рисовать договоримся:
узел 1- здесь точка схемы, где соеденены концы сопротивлений R1, R2 и R3;
ток I1 - ток протекающий по ветви с сопротивлением R1, он втекает в узел 1;
ток I2 - ток протекающий по ветви с сопротивлением R2, он вытекает из узла 1;
ток I3 - ток протекающий по ветви с сопротивлением R3, он вытекает из узла 1;
Составим уравнения по Правилам Кирхгофа:
I1=I2+I3;
I2*R2 - I3*R3=E;
учтем,что по R1 протекае только ток источника тока J:
I1=J; I2=J-I3;
Подставим:
I1=I2+I3;
-I3*R3+(J-I3)*R2=E;
Откроем скобки:
J1=I2+I3;
-I3*R3+J*R2-I3*R2=E;
Сгруппируем:
I2=J-I3
J*R2-I3(R2+R3)=E;
Найдем ток I3
I3=(J*R2-E)/(R2+R3);
Подставим I3 в первое уравнение, и вычислим I2:
I2=J - [(J*R2-E)/(R2+R3)];
Приведем к общему знаменателю:
I2=[J(R2+R3)-(J*R2-E)]\(R2+R3);
Приведем подобные:
I2=[J*R2+J*R3-JR2+E]\(R2+R3);
Получим ток I2:
I2=[J*R3+E]\(R2+R3);
Падение напряжения на R2:
I2*R2=[J*R3*R2+E*R2]\(R2+R3);
Вольтметр показывает 0, приравняем падение напряжения к 0:
J*R3*R2+E*R2=0;
Условие, при котором вольтметр покажет 0:
J*R3= -E
Ну вот такой анализ схемы с Правил Кирхгофа...