По закону сохранения импульса составим уравнение:
(m₀ + mₓ) · υ = m₀ · 1,01υ + mₓ · 0,97υ
m₀ · υ + mₓ· υ = m₀ · 1,01υ + mₓ · 0,97υ
m₀ · υ + mₓ· υ - m₀ · 1,01υ - mₓ · 0,97υ = 0
-0,01m₀ · υ - 0,03mₓ · υ = 0
υ · (-0,01m₀ + 0,03mₓ) = 0
υ = 0; - 0,01m₀ + 0,03mₓ = 0
0,03mₓ = 0,01m₀
mₓ = 0,33m₀ или mₓ = m₀/3
p. s. cкажете откуда взял 0,97υ? да и ещё со знаком "+"?
Для тех кто на бронепоезде: - Хорошо понятое условие задачи, на половину решённая задача!)
Читаем условие: " После отбрасывания последней ступени его скорость
стала равной 1, 01 v, при этом отделившаяся ступень удаляется относительно корабля со скоростью 0, 04 v. Делаем акцент на слово " относительно":
Скорость с которой фактически движется последняя отделившаяся ступень будет:
0,04·υ - 1,01·υ = - 0,97·υ
Выразим V из закона Менделеева-Клапейрона:
P V = m R T / M => V = m R T / P M.
А теперь приравняем V1 к V2. И дабы не писать лишнего, сразу посмотрим, что у нас сократится: M, R, m (но сначала я напишу с m для ясности). Получаем:
m T1 / P1 = 0,4 m T2 / P2.
У тебя сейчас, наверное, возник вопрос: почему во второй части уравнения перед m стоит 0,4?
- Потому что исходя из условия задачи мы можем сделать вывод, что m2 = 0,4 m1 (в уравнении m1 заменена на просто m для краткости).
Теперь сокращаем массы, выводим P2:
P2 = 0,4 T2 P1 / T1 = 4*10^-1 * 273 * 2*10^5 / 3*10^2 = 72,8*10^3 Па