Радиус кривизны траектории связан с нормальным ускорением и скоростью формулой: a(n) = V²/R. Вертикальная составляющая скорости в верхней точке траектории равна нулю, поэтому скорость тела в данной точке равна горизонтальной составляющей, а ускорение, нормальное к вектору этой скорости – это ускорение свободного падения, поэтому: R = (Vx)²/g = (Vo²*cos²α)/g. Отсюда находим начальную скорость: Vo = √(Rg/cos²α) = √((15,6*10)/(√3/2)²) = √(156/(3/4) = √208= 4√13 ≈ 14,42221 м/с.
Максимальная высота подъёма составит: h = (Vo²*sin²a)/2g =(208*(1/4))/(2*10) = 52/20 = 2,6 м.
Период T=2*pi*sqrt(L*C) В таком контуре энергия на катушке равна энергии на конденсаторе. Wс=Wl (C*U^2)/2 = (L*I^2)/2 Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C) после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C) Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2) Мы просто выразили индуктивность и подставили в формулу периода. Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.
Вертикальная составляющая скорости в верхней точке траектории равна нулю, поэтому скорость тела в данной точке равна горизонтальной составляющей, а ускорение, нормальное к вектору этой скорости – это ускорение свободного падения, поэтому:
R = (Vx)²/g = (Vo²*cos²α)/g.
Отсюда находим начальную скорость:
Vo = √(Rg/cos²α) = √((15,6*10)/(√3/2)²) = √(156/(3/4) = √208= 4√13 ≈
14,42221 м/с.
Максимальная высота подъёма составит: h = (Vo²*sin²a)/2g =(208*(1/4))/(2*10) = 52/20 = 2,6 м.