М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Маргоритка2009
Маргоритка2009
14.10.2021 22:47 •  Физика

Установите соответствие между явлением или законом и примером его проявления. 1) включенный в розетку утюг нагревается 2) шины автомобиля нагреваются при движении по дороге 3) подброшенный вверх мяч через некоторое время падает на землю 4) наполненный теплым воздухом воздушный шар поднимается вверх 5) при вдохе легкие человека увеличиваются в объеме а) закон сохранения и превращения энергии b) закон паскаляc) закон архимедаd) закон всемирного тяготенияe) закон джоуля-ленца

👇
Ответ:
dfytr88
dfytr88
14.10.2021
1-е
2-в
3-д
4-с
5-а
:
4,7(93 оценок)
Открыть все ответы
Ответ:
карина2116
карина2116
14.10.2021
Обозначим:

L    – длина одного вагона или локомотива,

v_o    – скорость передней точки локомотива, когда он проезжает мимо,

v_1    – скорость поезда, когда локомотив только что проехал наблюдателя,

v_k    – скорость поезда, когда только k вагонов ещё не проехали мимо,

v    – скорость поезда, когда весь поезд проехал наблюдателя,

Будем измерять время от состояния    v_o \ .

Пусть через время    \tau    наступило состояние    v_1 \ .

Пусть состояния    v_o    и    v    – отделаят промежуток времени    t \ .

Состояния    v_k    и    v    – очевидно отделаят промежуток времени    \tau .

Через средние скрости, ясно, что:

\frac{ v_o + v_1 }{2} \tau = L \ ;      [1]

\frac{ v_k + v }{2} \tau = kL \ ;      [2]

\frac{ v_o + v }{2} t = (N+1)L \ ;      [3]

Кроме того:

v - v_k = a \tau = v_1 - v_o \ ;

v + v_o = v_1 + v_k \ ;      [4]

Складывая [1] и [2], получаем:

(k+1)L = \frac{ v_o + v_1 }{2} \tau + \frac{ v_k + v }{2} \tau = \frac{ v_o + v_1 + v_k + v }{2} \tau \ ;

Учитывая [4], получаем:

(k+1)L = ( v_o + v ) \tau \ ;

(N+1)L = \frac{ v_o + v }{2} t \ ;

Разделим последние уравнения:

\frac{N+1}{k+1} = \frac{t}{ 2 \tau } \ ;

t = \frac{N+1}{k+1} \cdot 2 \tau \ ;    [5] – это всё время движения поезда мимо наблюдателя:

За это время скорость дорастает от значения    v_o    до значения    v \ ,    изменяясь на величину    ( v - v_o ) \ .

При том же ускорении за первый интервал    \tau    скорость возрастёт только на величину:

v_1 - v_o = \frac{ \tau }{ t } ( v - v_o ) \ ;

v_1 = v_o + \frac{ \tau }{ t } ( v - v_o ) \ ;

Средняя скорость за время проезда локомотива:

v_{cp} = \frac{ v_o + v_1 }{2} = v_o + \frac{ \tau }{ 2t } ( v - v_o ) \ ;

L = v_{cp} \tau = ( v_o + \frac{ \tau }{ 2t } ( v - v_o ) ) \tau \ ;      [6]

Средняя скорость за время проезда всего поезда:

V_{cp} = \frac{ v_o + v }{2} \ ;

(N+1)L = V_{cp} t = \frac{ v_o + v }{2} t \ ;      [7]

Перемножим [6] и [7] крест-накрест:

\frac{ v_o + v }{2} t = (N+1) ( v_o + \frac{ \tau }{ 2t } ( v - v_o ) ) \tau \ ;

( v_o + v ) \frac{t}{ \tau } = (N+1) ( 2 v_o + \frac{ \tau }{t} ( v - v_o ) ) \ ;

С учётом [5] имеем:

( v_o + v ) \frac{2}{k+1} = 2 v_o + \frac{k+1}{2(N+1)} ( v - v_o ) \ ;

\frac{2}{k+1} v - \frac{k+1}{2(N+1)} v = 2 v_o - \frac{k+1}{2(N+1)} v_o - \frac{2}{k+1} v_o \ ;

( \frac{2}{k+1} - \frac{k+1}{2(N+1)} ) v = ( \frac{2k}{k+1} - \frac{k+1}{2(N+1)} ) v_o \ ;

( \frac{4(N+1)}{(k+1)^2} - 1 ) v = ( \frac{4(N+1)k}{(k+1)^2} - 1 ) v_o \ ;

( \frac{4(N+1)}{(k+1)^2} - 1 ) v = ( \frac{4(N+1)k}{(k+1)^2} - k + k -1 ) v_o \ ;

( \frac{4(N+1)}{(k+1)^2} - 1 ) v = ( ( \frac{4(N+1)}{(k+1)^2} - 1 ) k + k -1 ) v_o \ ;

ОТВЕТ:

\frac{v}{v_o} = k + \frac{ k - 1 }{ \frac{4(N+1)}{(k+1)^2} - 1 } \ ;

Например, при    N = 11    и    k = 5 \ ,    получаем:

\frac{v}{v_o} = 5 + \frac{ 5 - 1 }{ \frac{4(11+1)}{(5+1)^2} - 1 } = 17 \ ;

при    N = 14    и    k = 5 \ ,    получаем:

\frac{v}{v_o} = 5 + \frac{ 5 - 1 }{ \frac{4(14+1)}{(5+1)^2} - 1 } = 11 \ ;

при    N = 20    и    k = 6 \ ,    получаем:

\frac{v}{v_o} = 6 + \frac{ 6 - 1 }{ \frac{4(20+1)}{(6+1)^2} - 1 } = 13 \ .
4,8(80 оценок)
Ответ:
countrestrikegl
countrestrikegl
14.10.2021
ПЕРВЫЙ

Обозначим скорость поезда в начальный момент, как    v_o \ ,

скорость, когда только один вагон проехал мимо наблюдателя:    v_1 \ ,

когда только 6 последних вагонов не проехали наблюдателя:    v_6 \ ,

и скорость , когда весь состав проехал мимо наблюдателя:    v \ .

В соответствии с условием: интервалы времени от состояния    v_o    до    v_1 \ ,    и от состояния    v_6    до    v    – одинаковы, а значит и изменение скорости одинаковое, поскольку движение равноускоренное:

v - v_6 = v_1 - v_o \ ;      [1]

С другой стороны, от состояния    v_6    до    v    – поезд проезжает расстояние вшестеро большее, чем от состояния    v_o    до    v_1    – а значит, средняя скорость v_{6end}    вшестеро больше средней скорости    v_{o-1} .

v_{6end} = 6 v_{o-1} \ ;

v + v_6 = 6 v_1 + 6 v_o \ ;

Сложим с [1] :

v = 3.5 v_1 + 2.5 v_o \ ;      [2]

Поскольку разность квадратов краевых скоростей при одном и том же ускорении пропорциональна пройденному пути, то:

v^2 - v_o^2 = 21 ( v_1^2 - v_o^2 ) \ ,
так как вся длина поезда составляет    20    вагонов + локомотив.

Подставляем [2] и получаем:

( 3.5 v_1 + 2.5 v_o )^2 = 21 v_1^2 - 20 v_o^2 \ ;

12.25 v_1^2 + 17.5 v_1 v_o + 6.25 v_o^2 = 21 v_1^2 - 20 v_o^2 \ ;

8.75 v_1^2 - 17.5 v_1 v_o - 26.25 v_o^2 = 0 \ ; \ \ \ \ || : 8.75 v_o^2 }

(\frac{v_1}{v_o})^2 - 2 \cdot \frac{v_1}{v_o} - 3 = 0 \ ;

\frac{v_1}{v_o} \in \{ -1 , 3 \} \ ;

v_1 = 3 v_o \ ;

Из [2]:

v = 3.5 v_1 + 2.5 v_o = 3.5 \cdot 3 v_o + 2.5 v_o = 13 v_o \ ;

ОТВЕТ:    \frac{v}{v_o} = 13 \ .

ВТОРОЙ

Запишем уравнение движения передней точки поезда относительно наблюдателя:

S = v_o t + \frac{at^2}{2} \ ;

Обозначим длину вагона, как    L .

Локомотив, потом почти весь состав без 6 вагонов, и затем весь состав –
– проедут через время    t_o , t_6    и    t :

L = v_o t_o + \frac{a t_o^2}{2} \ ;        [1]

15L = v_o t_6 + \frac{a t_6^2}{2} \ ;        [2]

21L = v_o t + \frac{a t^2}{2} \ ;

Вычтем из последнего – предпоследнее:

6L = v_o ( t - t_6 ) + \frac{a}{2} ( t^2 - t_6^2 ) \ ;

Поскольку    t - t_6 = t_o ,    то, используя [1]:

6L = v_o t_o + \frac{a t_o}{2} ( t + t_6 ) = 6 v_o t_o + 6 \cdot \frac{a t_o^2}{2} \ ;

v_o + \frac{a}{2} ( t + t_6 ) = 6 v_o + 6 \cdot \frac{a t_o}{2} \ ;

t + t_6 = \frac{10v_o}{a} + 6 t_o \ ;

t_6 + t_o + t_6 = \frac{10v_o}{a} + 6 t_o \ ;

t_6 = \frac{5v_o}{a} + 2.5 t_o \ ;

t = t_6 + t_o = \frac{5v_o}{a} + 3.5 t_o \ ;            [3]

Учитывая [2] :

15L = v_o ( \frac{5v_o}{a} + 2.5 t_o ) + \frac{a}{2} ( \frac{5v_o}{a} + 2.5 t_o )^2 \ ;

Используя [1] :

15L = \frac{35v_o^2}{2a} + 15 v_o t_o + \frac{ 25 a t_o^2 }{8} = 15 v_o t_o + 15 \cdot \frac{a t_o^2}{2} \ ;

\frac{35v_o^2}{2a} = \frac{ 35 a t_o^2 }{8} \ ;

4 \frac{v_o^2}{a} = a t_o^2 \ ;

( \frac{ a t_o }{ v_o } )^2 = 4 \ ;

\frac{ a t_o }{ v_o } = 2 \ ;

a t_o = 2 v_o \ ;

Скорость в конце прохождения всего состава, учитывая [3] :

v = v_o + a t = v_o + a ( \frac{5v_o}{a} + 3.5 t_o ) =

= v_o + 5v_o + 3.5 a t_o = 6 v_o + 3.5 \cdot 2 v_o = 13 v_o \ ;

ОТВЕТ:    \frac{v}{v_o} = 13 \ .
4,7(81 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ