Все мы ежедневно сталкиваемся с различными ситуациями, в ходе которых видим: все, по какой-то причине, падает на Землю. Так почему же любое брошенное тело падает на Землю? Давайте попробуем разобраться. Можно также вспомнить, что тела падают по-разному. Более весомые - быстрее, менее весомые - медленнее. Так значит, что-то, что заставляет тела падать на Землю, зависит от массы тела, при чем прямо пропорционально (т.е., чем больше масса тела, тем больше притягивается он к Земле). Нетрудно также понять, что именно под действием какой-то силы тело начинает притягиваться к Земле. В физике такую силу принято называть силой тяжести. Мы уже выяснили, что сила тяжести зависит от массы тела. Но, как оказалось, сила тяжести разная на разных планетах, значит, зависит не только от массы тела. Давайте вспомним второй закон Ньютона: "Ускорение прямо пропорционально силе, приложенной к этому телу, и обратно пропорциональна массе". Если в результате силы возникает ускорение, то и в нашем случае будет присутствовать некое ускорение. Принято называть это ускорение ускорением свободного падения, а обозначать буквой g. Мы выяснили, что сила тяжести зависит от массы тела и от ускорения свободного падения, т.е. F тяж = mg. Но что это за ускорение, и чему оно равно? Среднее значение g для Земли - 9,8 м/с². Это значение удобно, когда мы решаем задачи, но не совсем точно. Почему? Ускорение свободного падения прямо пропорционально зависит от массы планеты и обратно пропорционально - от квадрата радиуса этой планеты. Как мы знаем, Земля - не идеальный шар. Планета сплюснута у полюсов, в результате чего радиус Земли на экваторе несколько больше. Как мы уже сказали, ускорение свободного падения обратно пропорционально квадрату радиуса планеты, а т.к. у полюсов квадрат радиуса меньше, то ускорение свободного падения - больше. Стоит подчеркнуть, что хоть мы и сталкиваемся с силой тяжести ежедневно, мы не всегда можем объяснить, почему так происходит. Но для этого и существует физика, которая находит закономерность даже в самых обыденных вещах.
Для теплопроводности необходим контакт тел, между которыми будет происходить теплопередача. При этом температура тел должна быть разной, т. е. они не должны находится в состоянии теплового равновесия.
В основе теплопроводности лежит молекулярный механизм: молекулы с большей кинетической энергией передают ее молекулам с меньшей кинетической энергией. Т. е. более быстрые молекулы толкают более медленные, при этом их скорость выравнивается.
С теплопроводности может происходить передача энергии между частями одного тела.
Теплопроводность вещества как проводить тепло зависит от молекулярно-атомного строения вещества. Например, металлы хорошо проводят тепло, а газы – нет, т. к. в последних молекулы находятся далеко друг от друга.
При теплопроводности теплопередача происходит за счет передачи энергии, но не переноса вещества. При конвекции теплопередача осуществляется с переноса вещества.
Поэтому конвекция не может происходить в твердых веществах. Она происходит только в газах и жидкостях. Теплопроводность может происходить и в твердых телах, и в жидкостях, и в газах.
Без частиц вещества теплопроводность и конвекция невозможны. Отличие между ними в том, что при конвекции происходит перемещение больших групп частиц.
Конвекция бывает вынужденной (когда для ее появления действует внешняя сила) и естественной (подчиняющейся физическим законам). Например, нагретый газ легче холодного, поэтому поднимается вверх, – это пример естественной конвекции. Действие ветра или вентилятора создают вынужденную конвекцию.
Теплопередача за счет излучения имеет электромагнитную природу и может происходить в вакууме. Если для теплопроводности необходим контакт тел, для конвекции – перенос вещества между телами, то для теплопередачи путем излучения не требуется ни того, ни другого. Именно излучение как вид теплопередачи доставляет нам энергию от Солнца, за счет которой и «живет» Земля.
Интенсивность излучения зависит от цвета тела, которое излучает или поглощает тепло. Более темные предметы излучают и поглощают энергию посредством излучения больше, чем светлые. Теплопроводность же не зависит от цвета, а зависит от плотности вещества.