Сначала определим скорость неразорвавшегося снаряда на высоте 10м.
h=(v^2 - v0^2) / -2g. v=кор. кв. из v0^2 - 2gh. v=14м/c.
Теперь скорость первого в момент разрыва: h=v01*t1 +g*t1^2 /2. ( t1=1c).
v01=h/t1 -gt1/2. v01=5м/c.
По закону сохранения импульса, определим скорость 2 осколка в момент разрыва: m*v=m*v02 / 2 - m*v01 / 2, сократим на массу m,
v02=2v +v01. v02=33м/с. Теперь определим высоту подъема вверх 2 осколка:
h1=v02^2 / 2g. h1=54,45м. и время его движения вверх: h1=g*t2^2 / 2.
t2=кор. кв. из 2h1 / g. t2=3,3c.
Высота с которой он падал вниз h2=h+h1. h2=10+54,45=64,45м. Вычислим время падения h2=g*t3^2/2, t3=кор. кв. из 2h2/g. t3=3,6c. Все время t4=t3+t2=3,6+3,3=6,9c
( чертеж сделать чтобы не напутать со знаками импульсов, хотя можно и высоту показать, нагляднее будет)
Дано:
r = 0,4 м
m = 8,5 кг
F = 5 H
Δω = 100 рад/с
Δt - ?
Возьмём бесконечно малую часть массой Δm, например, на ободе диска. Эта частица движется по окружности с линейной скоростью υ на расстоянии r от оси вращения. Произведение массы частицы, её линейной скорости и радиуса окружности называется моментом импульса частицы:
L = Δmυr
υ = ωr => L = Δmωrr = Δmr²ω
Произведение массы частицы и квадрата расстояния от частицы до оси её вращения называется моментом инерции частицы:
I = Δmr²
Теперь, если просуммировать все бесконечно малые частицы диска Δm_i (i = 1, 2, 3...), в том числе и те, что находятся на расстояниях r_i от оси его вращения, получим массу диска m. А если просуммировать все моменты инерции Δm_i*r_i², то получим момент инерции диска:
I = mr²/2
Следовательно, момент импульса диска:
L = (mr²/2)*ω = Ιω
Основное уравнение динамики вращательного движения:
ε = M/I
С другой стороны:
ε = Δω/Δt => Δω/Δt = M/I
Ι(Δω/Δt) = M
IΔω = MΔt, но т.к.:
Iω = L, то IΔω = ΔL => ΔL = MΔt - это основное уравнение динамики вращательного движения в импульсной форме.
Выразим Δt:
Δt = ΔL/M
M = F*r
ΔL = IΔω = (mr²/2)*Δω = mr²Δω/2 =>
=> Δt = (mr²Δω/2) : Fr = mr²Δω/(2Fr) = mrΔω/(2F) = 8,5*0,4*100/(2*5) = 8,5*0,4*10 = 8,5*4 = 34 c
ответ: 34 с.
Объяснение:
Фомула Томсона: T = 2п√(LC)
Если индуктивность L увеличить в 4 раза, то период Т увеличится в 2 раза (т. к. стоит корень) , т. е. станет равным 8 мкс