1) Если источник тока подключен, то напряжение на обкладках остается постоянным, это напряжение источника тока. Заряд на обкладках меняется. Поэтому используем формулу W = C* U² / 2 W₀ = C₀ * U² / 2 (1) - начальная энергия конденсатора C₀ = ε * ε₀ * s / d₀ - начальная емкость конденсатора W = C * U² / 2 (2) - конечная энергия конденсатора С = ε * ε₀ * s / (2 * d₀) - конечная емкость конденсатора Делим (1) на (2) W₀ / W = (ε * ε₀ * s * U² / (2*d₀)) / (ε * ε₀ * s * U² / (2*2d₀)) = 2 Энергия поля уменьшается в 2 раза 2) Если источник тока отключен, то напряжение на обкладках не остается постоянным. А вот заряд на обкладках остается постоянным. Поэтому используем формулу W = q² / (2 * C) W₀ = q² / (2 * C₀) (1) - начальная энергия конденсатора C₀ = ε * ε₀ * s / d₀ - начальная емкость конденсатора W = q² / (2 * C) (2) - конечная энергия конденсатора С = ε * ε₀ * s / (2*d₀) - конечная емкость конденсатора Делим (1) на (2) W₀ / W = (q² / (2 * ε * ε₀ * s / d₀) / (q² / (2 * ε * ε₀ * s / (2 * d₀)) = 1/2 Энергия поля увеличится в 2 раза 3) Электрическое поле определяется величиной заряда и емкостью. Емкость конденсатора в обоих задачах меняется одинаково. Но в первой задаче заряд уменьшается, переходит на источник тока. Необходимо использовать формулу W = C* U² / 2 Во втором случае заряд не изменяется, источник отключен. Необходимо использовать формулу W = q² / (2 * C)
1) Если источник тока подключен, то напряжение на обкладках остается постоянным, это напряжение источника тока. Заряд на обкладках меняется. Поэтому используем формулу W = C* U² / 2 W₀ = C₀ * U² / 2 (1) - начальная энергия конденсатора C₀ = ε * ε₀ * s / d₀ - начальная емкость конденсатора W = C * U² / 2 (2) - конечная энергия конденсатора С = ε * ε₀ * s / (2 * d₀) - конечная емкость конденсатора Делим (1) на (2) W₀ / W = (ε * ε₀ * s * U² / (2*d₀)) / (ε * ε₀ * s * U² / (2*2d₀)) = 2 Энергия поля уменьшается в 2 раза 2) Если источник тока отключен, то напряжение на обкладках не остается постоянным. А вот заряд на обкладках остается постоянным. Поэтому используем формулу W = q² / (2 * C) W₀ = q² / (2 * C₀) (1) - начальная энергия конденсатора C₀ = ε * ε₀ * s / d₀ - начальная емкость конденсатора W = q² / (2 * C) (2) - конечная энергия конденсатора С = ε * ε₀ * s / (2*d₀) - конечная емкость конденсатора Делим (1) на (2) W₀ / W = (q² / (2 * ε * ε₀ * s / d₀) / (q² / (2 * ε * ε₀ * s / (2 * d₀)) = 1/2 Энергия поля увеличится в 2 раза 3) Электрическое поле определяется величиной заряда и емкостью. Емкость конденсатора в обоих задачах меняется одинаково. Но в первой задаче заряд уменьшается, переходит на источник тока. Необходимо использовать формулу W = C* U² / 2 Во втором случае заряд не изменяется, источник отключен. Необходимо использовать формулу W = q² / (2 * C)
ответ: 10 м
Объяснение:
Как при движении на тело ( вдоль оси Ох ) действовала только сила трения , тогда мы можем записать уравнение движение тела в проекции на ось Ох
ma = - Fтр.
ma = - μN
ma = - μmg
a = - μg
a = - 0,5 * 10 = - 5 м/с²
из кинематики имеем
s = ( v² - v0² ) / ( 2a )
так как конечная скорость тела ( v ) равна 0 м/с , тогда
s = - v0² / 2a
s = ( -( 10 )² ) / ( -( 2 * 5 ) ) = 10 м