ответ: 41 м
Объяснение:
Дано:
h = 5 м
α = 30°
μ = 0,1
s - ?
Согласно ЗСЭ при движении санок по наклонной плоскости
mgh = ( mv² )/2 + Aтр.1
Где Aтр.1 - работа сил трения на наклонной плоскости
v - скорость тела у "подножия" наклонной плоскости
Поэтому
Атр.1 = Fтр.1L
Где L - длина наклонной плоскости
Атр.1 = μN1L
Т.к. N1 = mgcosα ( Докажите самостоятельно )
Тогда
Атр.1 = μmgcosαL
Возвращаюсь к начальному уравнению
Получим что
mgh = ( mv² )/2 + μmgcosαL (1)
Теперь перейдем к движению тела на горизонтальной плоскости
Согласно ЗСЭ
( mv² )/2 = Aтр.
( mv² )/2 = Fтр.s
Где Fтр. - сила трения на горизонтальном участке движения
Соответственно Fтр. = μmg ( Докажите самостоятельно )
Тогда
( mv² )/2 = μmgs
Подставим данное выражение в уравнение (1)
mgh = μmgs + μmgcosαL
Упростим
h = μ( s + cosαL )
sinα = h/L
Отсюда
L = h/sinα
Тогда
h = μ( s + ( hcosα )/sinα )
h = μ( s + hctgα )
s + hctgα = h/μ
s = h/μ - hctgα
s = h( 1/μ - ctgα )
s = 5( 1/0,1 - 1,73 ) ≈ 41 м
Поверь вычисления!!... точность не гарантирую...
Вес тела на полюсе P1
P1=m*g (вниз действует сила тяжести планеты, вверх - сила реакции опоры. По третьему закону Ньютона вторая сила численно равна весу тела, поскольку есть причиной возникновения силы реакции опоры)
Вес тела на экваторе P2
P2=m*(g-a)=m*(g-v^2/R) (На экваторе тело движется с цетростремительным ускорением, направленым к центру планеты. По второму закону Ньютона сила, вызывающая это ускорение равна силе теяжести минус сила реакции опоры. Дальше аналогично как в первом случае.
Для нахождения центростремительного ускорения нужно выразить скорость для движения тела по окружности.
v=2*п*R/T
подставить в формулу для веса
P2=m*(g-(4*п^2*R)/T^2) масса при делении в дальнейшем сократиться, проблема найти g этой планеты и её радиус R.
Вспоминаем закон всемирного тяготения и записываем силу тяжести, действующую на этой планете через две разные формулы. Вторая формула справедлива для тела, которое находится на поверхности планеты.
G*M*m/R^2=g*m
маленькая масса (масса тела) сокращается
G*p*V/R^2=g
Массу большую (планеты) расписываем как произведение плотности планеты на объём, где объём выражаем как объём шара
G*p*4*п*R^3/(3*R^2)=g
Выражаем отсюда радиус планеты.
R=3*g/(4*п*G*p)
Подставляем и выносим два общих множетеля: массу тела и ускорение свободного падения на этой планете:
P2=m*g*(1- 3*п/(T^2*G*p))
Находим отношение веса тела на полюсе и веса тела на экваторе:
P1/P2=m*g/[ m*g*( 1- 3*п/(T^2*G*p) ) ] =1/[1-3*п/( T^2*G*p)]
P1/P2=1/[1-3*3,14/(10^10*6,67*10^(-11)*700) ] =1,0205=102,05%
Получили, что если вес тела на экваторе принять за 100%, то на полюсе он больше примерно на 2,1%