1.потенциальная энергия поднятого тела над землей переходит в кинетическую энергию движущегося тела.
после удара кинетическая энергия копра переходит в кинетическую энергию сваи, свая движется в почве под действием трения и ее кинетическая энергия переходит во внутреннюю энергию сваи и почвы.
2.кинетическая энергия движущегося автомобиля за счет трения переходит во внутреннюю энергию тормозных колодок, нагревающихся шин и дорожного покрытия.
3.вначале оба шарика потенциальной энергией, которая переходит в кинетическую энергию.
в первом случае соударение : кинетическая энергия шарика переходит в потенциальную энергию деформировавшейся плиты и шарика; а затем она снова переходит в кинетическую энергию шарика. эта кинетическая энергия затем переходит в потенциальную энергию по мере подъема шарика.
во втором случае кинетическая энергия шарика переходит во внутреннюю энергию шарика и песка.
4.кинетическая энергия шнура переходит во внутреннюю энергию шнура и трубки; затем внутренняя энергия трубки посредством теплопередачи частично переходит во внутреннюю энергию эфира. внутренняя энергия эфира при кипении эфира переходит в потенциальную энергию сжатого пара, а она, в свою очередь, переходит в кинетическую энергию пробки; по мере подъема пробки вверх ее кинетическая энергия переходит в потенциальную энергию.
Предположим, что шарик двигается равномерно, то есть с постоянной скоростью. Тогда за равные промежутки времени шарик должен проходить равные отрезки пути. Проверим, двигается ли шарик равномерно. Ясно, что при начальной скорости, равной нулю, шарик будет оставаться на месте. Тогда назначим ему скорость в 1 м:
v0 = v = 1 м/с
t1 = 1 c
t2 = 1 c
t3 = 1 c
s1 = v*t1 = 1*1 = 1 м
s2 = v*t2 = 1*1 = 1 м
s3 = v*t3 = 1*1 = 1 м
Видно, что за каждую секунду шарик проходить расстояние в 1 м. Возьмём теперь первое, второе и третье положения шарика на рисунке и посмотрим на разницу в расстояниях:
s1 = L1 - 0 = 1 - 0 = 1 дм
s2 = L2 - L1 = 4 - 1 = 3 дм
Промежутки расстояний за равные промежутки времени оказываются не равными друг другу:
3 > 1, кроме того, 1 > 0, т.е.:
1 - 0 = 1
3 - 1 = 2 и значит 2 > 1
Получается, что промежутки увеличиваются со временем, и это значит, что движение не равномерное, а ускоренное. Проверим теперь, движется ли шарик равноускоренно.
Равноускоренному движению присуща следующая закономерность: расстояния, пройденные за равные интервалы времени, соотносятся как ряд нечётных последовательных чисел: 1, 3, 5, 7...
По рисунку видно, что:
s1 = 1 дм
s2 = 3 дм
s3 = 5 дм
s4 = 7 дм
Есть и ещё одна закономерность, присущая только равноускоренному движению: при равных отсчитываемых интервалах времени каждый новый промежуток расстояния в сумме с предыдущими (обозначим эту сумму как большую S) больше первого промежутка в квадрат того числа, которое является порядковым номером крайнего промежутка: S2 = s1 + s2 = 2²*S1, S3 = s1 + s2 + s3 = 3²*S1, S4 = s1 + s2 + s3 + s4 = 4²*s1...
Проверим:
S1 = 1 дм
S2 = 4 дм = 2²*1
S3 = 9 дм = 3²*1
Значит, шарик движется равноускоренно, причём в начальный момент времени его скорость равна нулю. Найдём ускорение:
v0 = 0 м/с
t1 = 0,2 c
s1 = 1 дм = 10 см = 0,1 м
s1 = a*t1²/2 => a = 2*s1/t1² = 2*0,1/0,2² = 5 м/с²
Найдём скорости:
v = v0 + at
v1 = v0 + 5*0,2 = 0 + 1 = 1 м/с
v2 = 5*2*0,2 = 2 м/с
v3 = 5*3*0,2 = 3 м/с
v4 найдём, используя первую закономерность, рассчитав отрезок s5, не изображённый на рисунке, по формуле:
s = v0*t + a*t²/2
s5 = s4 + (s4 - s3) = 7 + (7 - 5) = 9 дм = 0,9 м
v4 будет являться начальной скоростью для этого отрезка, поэтому:
s5 = v4*t1 + a*t1²/2 | *2
2*s5 = 2*v4*t1 + a*t1²
2*v4*t1 = 2*s5 - a*t1²
v4 = (2*s5 - a*t1²)/(2*t1) = (2*0,9 - 5*0,2²)/(2*0,2) = (1,8 - 0,2)/0,4 = 1,6/0,4 = 4 м/с
S= (V1^2-V2^2)m/2F
t=(V2-V1)m/F