В-1. а) Камень движется по параболической орбите ( поднимается из начальной точки, достигает наивысшей точки и идет на снижение засчет силы тяжести и гравитации)
б) По круговой орбите (формально - эллиптической, но эксцентриситет земной орбиты очень мал, посему принято считать за круговой)
г) Параболическая орбита, траектория - кривая линия.
27 км/ч переводим в систему СИ: 27000 м/3600 с или 7.5 м/с. 15 м/с>7.5 м/с => 15 м/с>27 км/ч (что и требовалось доказать)
Первый автомобиль проделал путь= 12 м/с*10 с=120 м. Чтобы определить скорость второго авто делим пройденный путь на время: 120 м/15 с=8 м/с
Оба тела движутся прямолинейно равномерно, в положительном направлении оси абсцисс. Чтобы решить графически - строй координатную плоскость и графики для каждого тела (зависимость координаты от времени). 1) Чтобы найти время встречи, приравниваем уравнения. 3+2t=6+t<=>t=6-3<=>t=3 (c) - время встречи.
2) Чтобы найти место встречи - подставь время встречи в одно из уравнений движения: 6+3=9(м) - место встречи.
Vx=V0x+axt. ⇒ ax=(Vx-Vox)/t. В данном случае начальная скорость - 2 м/с.⇒ ax=(5 м/с-2 м/с)/5 с = 0,6 м/с².
Дальше предлагаю решать по аналогии. Формулы приложу ниже:
Vx=V0x+axt (1) - формула определения скорости при равнопеременном движении.
Sx=V0xt+(axt²)/2 - пройденный путь при равнопеременном движении. С их можно решить любую задачу по кинематике пр прямолинейном движении. Учи физику - интереснейший предмет!
k = 240 Н/м
m = 0,6 кг
N = 100
t = ?
Решение:
t = N·T, где T - период колебаний пружинного маятника
T = 2π√(m/k)
t = 2π·N·√(m/k)
t = 200π·√( 0,6 / 240) = 200π·(1/20) = 10π секунд
ответ: 10π с