Сначала определим скорость неразорвавшегося снаряда на высоте 10м.
h=(v^2 - v0^2) / -2g. v=кор. кв. из v0^2 - 2gh. v=14м/c.
Теперь скорость первого в момент разрыва: h=v01*t1 +g*t1^2 /2. ( t1=1c).
v01=h/t1 -gt1/2. v01=5м/c.
По закону сохранения импульса, определим скорость 2 осколка в момент разрыва: m*v=m*v02 / 2 - m*v01 / 2, сократим на массу m,
v02=2v +v01. v02=33м/с. Теперь определим высоту подъема вверх 2 осколка:
h1=v02^2 / 2g. h1=54,45м. и время его движения вверх: h1=g*t2^2 / 2.
t2=кор. кв. из 2h1 / g. t2=3,3c.
Высота с которой он падал вниз h2=h+h1. h2=10+54,45=64,45м. Вычислим время падения h2=g*t3^2/2, t3=кор. кв. из 2h2/g. t3=3,6c. Все время t4=t3+t2=3,6+3,3=6,9c
( чертеж сделать чтобы не напутать со знаками импульсов, хотя можно и высоту показать, нагляднее будет)
Дано:
эВ
Согласно уравнению Эйнштейна для фотоэффекта энергия поглощенного кванта hν идет на совершение работы выхода A и на сообщение кинетической энергии вылетевшему электрону:
Работа выхода A - это минимальная работа, которую надо совершить, чтобы удалить электрон из металла.
Минимальная частота света v (min), при которой ещё возможен фотоэффект, соответствует максимальной длине волны λmax:
В этой формуле h – это постоянная Планка, равная 6,62·10-³⁴ Дж·с, частоту колебаний можно выразить через скорость света c, которая равна 3·108 м/с, и длину волны по формуле:
Подставим выражение (2) в формулу (1), тогда:
Откуда искомая красная граница фотоэффекта λmax равна:
Посчитаем численный ответ (напоминаем, что 1 эВ = 1,6·10-¹⁹ Дж:
ответ: 0,261 мкм.