На мяч в воде действует сила тяжести и Архимедова. По второму закону Ньютона ma=F-mg, где архимедова сила определяется по формуле: F=ρgV.
Отсюда ускорение мяча в воде: a=F/m-g, a=ρgV/m-g. Сопротивление воды не учитываем. Из формулы пути в воде найдём скорость мяча на поверхности воды:
h=v^2/2a=v^2/(2(ρgV/m-g)). v^2=2h( ρgV/m-g).
Из закона сохранения энергии мяча над водой найдём высоту:
mgs=〖mv〗^2/2, s=v^2/2g=(2h(ρgV/m-g))/2g=(h(ρgV/m-g))/g=(1((1000∙10∙10∙〖10〗^(-6))/0,01-10))/10=0
(Это полное решение задачи. Но вообще по условию получается, что сила тяжести равна силе Архимеда, поэтому мяч с такими данными будет плавать в воде. Чтобы мяч выпрыгнул из воды надо взять больше объём или меньше массу. )
Объяснение:
V=4м3
g=10 H/кг
р(ро)=900кг/м3
Решение:
Fа=рgV=900*10*4=36000H
ответ: 36000Н, С