Объяснение:
Дано:
ε = 3
ρ / ρ₁ - ?
1)
Пусть сила тяжести шарика равна m·g
Сила притяжения шарика к пластине F.
Шарик в равновесии, поэтому запишем
m·g = F
ρ·g·V = F (1)
2)
Заливаем диэлектрик.
Сила тяжести не изменилась.
Сила притяжения стала в ε раз меньше:
F₁ = F / ε.
Кроме того появляется и выталкивающая сила:
Fₐ = ρ₁·g·V
Но шарик по прежнему в равновесии:
m·g = F / ε + ρ₁·g·V (2)
Тогда, учитывая (1), имеем:
ρ·g·V = ρ·g·V / ε + ρ₁·g·V
ρ = ρ / ε + ρ₁
ρ· (1 - 1/ε) = ρ₁
ρ / ρ₁ = ε / (ε - 1)
ρ / ρ₁ = 3 / 2
Объяснение:
Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.
Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.
Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.
Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).
Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.
S=0.03 м² d=0.015 м ε=7 εo=8.85*10^-12 Ф/м C=?
===
С=ε*εo*S/d=7*8.85*10^-12*0.03/0.015=127*10^-12 Ф (124 пФ)