Радиус вписанной окружности равен отношению площади треугольника к его периметру. найдем периметр: р=5*2+6=16. найдем площадь треугольника, для этого проведем из вершины к основанию высоту. так как в равнобедренном треугольнике высота является также и медианой, то основание разделилось на две равные части (6/2=3). найдем высоту по теореме пифагора: h²=5²-3²=25-9=16 h=4. теперь находим площадь треугольника, которая равна половине произведения основания на высоту: s=1/2*6*4=12 находим радиус вписанной окружности: r=s/p=12/16=0,75
АВС равнобедренный треугольник по условию. Окружность касается АВ в точке М, также она касается ВС в точке К. На таком же расстоянии - треугольник равнобедренный. И она касается АС в точке Р. Из точек А, В и С проведены касательные к окружности. По теореме о касательных - они равны. АМ=АР = 18. СК=СР = 18. МВ=ВК = 12. Стороны треугольника равны АВ=ВС=30 АС=36. Периметр треугольника равен 30+30+36 = 96. Полупериметр = 96:2 = 48. Площадь треугольника по формуле Герона: √48*18*18*12 = 18*24 = 432 Площадь треугольника через радиус вписанной окружности S=p*r, отсюда r = S/p = 432/48 = 9 ответ: радиус вписанной окружности равен 9.