Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
пусть сторон квадрата х
если сторона квадрата измеряется целым числом сантиметров.
-то х- натуральное число
площадь одного квадрата х^2 - натуральное число
общая площадь S=189*147 =27783
количество квадратов k - НАИМЕНЬШЕЕ натуральное число, потому что
количество квадратов наибольшей площади,
формула kx^2 =27783 <какой здесь максимальный квадрат натурального числа ?
точно не делится на 2,4,5,6,8
ну ясно , что квадрат не ОДИН
делим 27783 / 3=9261 - НЕ ЦЕЛЫЙ квадрат
делим 27783 / 7=3969 - ЦЕЛЫЙ квадрат числа 63
значит сторона квдрата 63 см
ПРоВЕРЯЕМ
7*63^2 = 27783
27783 = 27783 - верное тождество - подходит
ОТВЕТ
количество квадратов - 7
сторона квадрата 63 см
наибольшая площадь квадрата 3969 см2