Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.
В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.
Рассмотрим подробно каждый случай.
Объяснение:
∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
объяснение: смотри вложение.
чтобы найти сечение, нужно найти точки, принадлежащие плоскости сечения и плоскостям, содержащим грани фигуры. затем соединить эти точки. сечение готово.
1. точки m и n принадлежат и сечению и грани afd, проводим прямую mn до пересечения с продолжением ребра da. точка р принадлежит и плоскости сечения, и грани авсd. поэтому можем провести прямую рк до пересечения с продолжением ребра dc. точка т принадлежит и плоскости сечения, и грани dcf, плэтому можем соединить точки м и т и получить точку g, принадлежащую и плоскости сечения, и грани dfc. мы так же получили и точку е на ребре ав.
соединяем точки m,n,е,k,g и м.
фигура mnekg - искомое сечение.
2. 1. проводим прямую mn, получаем точки р и q на пересечении с аа1 и ad.
2.проводим прямую рк и получаем точки g и t.
3. проводим прямую тq и получаем точки e и f.
4. соединяем точки m,n,e,f,k,g и m и получаем искомое сечение mnefkg.