Параллелограмме abcd угол a равен 60 градусов высота bh делит сторону ad на две равные части длина диагонали bd равна 10 см найдите периметр параллелограмма
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
ответ: 12 см.
объяснение: смотри вложение.
авсд - параллелограмм , ∠а=60° , р=48 см , ве⊥ад , ае=ед .
периметр параллелограмма р=2·(a+b)=48 ⇒ a+b=24 .
ад+ав=24 см.
так как ве - высота и ае=ед , то δавд - равнобедренный: ав=вд .
так как в равнобедренном δавс один из углов равен 60°, то δавс - равносторонний ⇒ ав=вд=ад ⇒ ад+ав=2·ав=24 , ав=24: 2=12 .
диагональ вд=ав=12 см.