ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15
ΔАСВ - прямоугольный : АВ - гипотенуза ; АС,СВ - катеты
∠С= 90°
∠В = 60°
Сумма острых углов прямоугольного треугольника равна 90°.
Следовательно: ∠А = 90 - 60 = 30°
Катет лежащий против угла в 30° равен половине гипотенузы.
СВ = АВ/2
По теореме Пифагора:
АВ² = АС² + СВ² ⇒ АВ² = АС² + (АВ/2)²
АС= √ (АВ² - (АВ²/4)) ⇒ АС = √ ((4АВ² - АВ²)/4) = √(3АВ²/4) = (АВ*√3) /2
S =1/2 * АС * СВ = 18√3 / 3
1/2 * ((АВ*√3)/2 * (АВ/2)) = 18√3 / 3
1/2 * ( (АВ²*√3) / 4 ) = 18√3 / 3
АВ²√3 / 8 = 18√3 / 3
3 *√3* АВ² = 18√3 * 8
АВ² = 144√3 / 3√3
АВ² = 48
АВ = √48 = √(16*3) = 4√3 - гипотенуза
СВ = 4√3 /2 = 2√3 - один катет
АС = (4√3 *√ 3)/2 = (4*(√3)²)/2 = 12/2 = 6 - второй катет, который лежит против угла В = 60°.
ответ: АС = 6.