По условию, МСН = 13°.
1) Сумма острых углов СМН, МСН прямоугольного треугольника НСМ равна 90o. Значит, СМН = 90o - МСН = 90o - 13o = 77o
2) Треугольник АМС равнобедренный, т.к. СМ равна половине гипотенузы по свойству из п.3 "Что необходимо знать для решения", а АМ равна половине гипотенузы, т.к. СМ - медиана. Отсюда следствие: угол А равен углу АСМ по свойству углов при основании равнобедренного треугольника.
3) Угол СМН внешний по отношению к треугольнику АМС. Он равен сумме двух внутренних А и АСМ, с ним не смежных. Но А = АСМ как углы при основании равнобедренного треугольника. Следовательно, А = АСМ = 77o : 2 = 38,5o
4) Один острый угол А треугольника АВС мы нашли. Теперь найдем второй. Сумма острых углов А, В прямоугольного треугольника АВС равна 90o. Значит, В = 90o - А = 90o - 38,5o = 51,5o
Больший угол равен 51,5o.
ответ: 51,5°
Ну раз вы два раза публикуете, заберем очки :))) нехорошо конечно...
проводим через точку А общую касательную АК (не важно, как далеко К, пусть она на ВС, для ясности). Нм надо найти сумму углов ОАК и О1АК.
Угол ВАК измеряется половиной дуги АВ окружности с центром О, а угол САК измеряется половиной дуги АС окружности с центром О1 - это углы между касательной АК и секущими АВ и АС (в разных окружностях, конечно).
Центральные углы этих дуг (углы ВОА и СО1А) - это не прямые углы при основаниях в прямоугольной трапеции ОО1СВ. Поэтому сумма их равна 180 градусам (ну, как там это называется, внутренние односторонние углы при параллельных, вроде, ясно, что ОВ II О1С).
Поэтому сумма углов ВАК и САК = 180/2 = 90. чтд.
а) a и KM могут быть параллельными либо скрещивающимися прямыми
б) a и KT могут быть только скрещивающими прямыми
Объяснение:
Если прямые a и KM параллельны, то расстояние между этими прямыми может быть любым и не зависит от расстояния между плоскостями.
То же самое касается и прямых a и KT.
Если одновременно все прямые параллельны, то при этом расстояние между плоскостями не определить.
Допустим теперь, что прямые а и KM - скрещивающиеся. Тогда по определению расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, в которых они лежат. Отсюда получается, что расстояние между плоскостями α и β равно расстоянию между прямыми а и KM, т.е. 5.
При этом прямые a и KT будут параллельными.
Обратная ситуация невозможна, т.е. когда прямые a и KT являются скрещивающимися, а прямые а и KM параллельными, т.к. в таком случае расстояние между параллельными плоскостями равно расстоянию между любыми скрещивающимися прямыми, лежащими в этих плоскостях, т.е. расстоянию между прямыми a и KT, которое равно 8, из-за чего прямые а и KM не могут лежать в плоскостях, т.к. расстояние между ними меньше расстояния между плоскостями.