М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Pomawkal
Pomawkal
03.12.2021 22:46 •  Геометрия

4x+2х²+10=0

нужно найти дискриминант

👇
Ответ:
Катти16
Катти16
03.12.2021

ответ: дискриминант 4²-4*2*10=16-80=-64. Всё просто.

Объяснение:

4,8(20 оценок)
Ответ:
lizza3429
lizza3429
03.12.2021

не будет дискриминанта

Объяснение:

D=b^2-4ac=16-80

4,8(16 оценок)
Открыть все ответы
Ответ:
Nikidiy
Nikidiy
03.12.2021

ответ: r=12 см

Объяснение: Обозначим данный треугольник АВС, ВМ - медиана, О - центр описанной окружности, ВК - диаметр.

 Медиана равнобедренного треугольника к основанию  является  его высотой  и биссектрисой.⇒  ВМ⊥АС.

 Примем коэффициент отношения отрезков медианы равным а. Тогда ВО=25а, ОМ=7а.

∠КАВ – вписанный, ВК - диаметр, ⇒ ∆ ВАК прямоугольный, АМ - его высота. Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.⇒ АМ²=КМ•ВМ.  

  ОК=ОВ=25а - радиусы.  ⇒ ВМ=ВО+ОМ=25а+7а=32а;    МК= ОК-ОМ=25а-7а=18а. ⇒ АМ²=32а•18а=576а², откуда AM=√576a²=24a.

   Из прямоугольного ∆ АВМ по т.Пифагора АМ²+ВМ²=АВ², т.е. 24а²+32а*=1600, откуда а=1 см.

  Формула радиуса вписанной в треугольник окружности r=S/p, где Ѕ - площадь треугольника. р - его полупериметр. r=0,5•ВМ•АС:0,5(АВ+ВС+АС)=12 см


Центр окружности, описанной около равнобедренного треугольника, делит медиану, проведенную к основан
4,6(42 оценок)
Ответ:
tanya260516
tanya260516
03.12.2021

ответ: 26

Объяснение:

Пусть r -- радиус вписанной окружности в ΔBCP, а R --  радиус вписанной окружности в ΔBAC

1.

tg∠BAC = 12/5, откуда по определению тангенса

\frac{BC}{AC}=\frac{12}{5}

Пусть BC = 12x, тогда AC = 5x

По теореме Пифагора найдём AB:

AB=\sqrt{AC^2+BC^2}=\sqrt{25x^2+144x^2}=\sqrt{169x^2}=13x

2.

tg∠CAP = 12/5, по определению тангенса из ΔACP

\frac{CP}{AP}=\frac{12}{5}

Пусть CP = 12y, тогда AP = 5y

Составим уравнение с теоремы Пифагора в ΔACP и выразим y через x:

AC^2=CP^2+AP^2\\ \\ (5x)^2=(12y)^2+(5y)^2\\ \\ 25x^2=144y^2+25y^2\\ \\ 169y^2=25x^2\\ \\ y^2=\frac{25x^2}{169} \\ \\ y=б\frac{5x}{13}

Отрицательным y быть не может, так как он выражает длину отрезка, следовательно y = 5x/13, откуда

CP=12y=\frac{60x}{13}\\ \\ AP=5y=\frac{25x}{13}

3. Выразим через x сторону BP, периметр и площадь ΔCPB:

PB=AB-AP=13x-\frac{25x}{13}=\frac{169x-25x}{13}=\frac{144x}{13}

P \Delta CPB=CP+PB+CB=\frac{60x}{13}+\frac{144x}{13}+12x=\frac{60x+144x+156x}{13}=\frac{360x}{13}

S \Delta CPB=\frac{1}{2}\cdot CP\cdot PB =\frac{1}{2}\cdot \frac{60x}{13}\cdot \frac{144x}{13}=\frac{30\cdot144x^2}{169}

4. Используя формулу площади через радиус вписанной окружности составим уравнение:

S \Delta CPB=\frac{P \Delta CPB}{2} \cdot r\\ \\ \frac{30\cdot144x^2}{169}=\frac{360x}{13\cdot 2}\cdot24\\ \\ \frac{30\cdot144x}{169}=\frac{360\cdot24}{13\cdot 2}\\ \\ x=\frac{360\cdot12}{13}:\frac{30\cdot144}{169}\\ \\ x=\frac{30\cdot12\cdot12}{13}\cdot \frac{169}{30\cdot144}\\ \\ x=13

5. Используя найденный x, вычислим периметр и площадь ΔABC:

PΔabc = AB + BC + AC = 13x + 12x + 5x = 30x = 30*13

SΔabc = 1/2 * AC * CB = 1/2 * 5x * 12x = 30x² = 30*13²

6. Найдём R, составив уравнение по формуле S = P/2 * R

30\cdot 13^2=\frac{30\cdot 13}{2} \cdot R\\ \\ R=(30\cdot 13^2):(15\cdot 13)\\ \\ R=13\cdot 2\\ \\ R=26


Из вершины прямого угла c треугольника abc проведена высота cp. радиус окружности, вписанной в треуг
4,6(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ