Свойство --- это характеристика известного объекта
(например, если дан ромб, то из этого следует,
что его диагонали взаимно перпендикулярны)))
а признак --- это характеристика неизвестного объекта, т.е.
необходимо определить что это за объект (по признакам)))
т.е. если сказано, что диагонали 4-угольника взаимно перпендикулярны,
то из этого не следует, что это ромб (это НЕ признак)))
если стороны 4-угольника равны, то точно ничего утверждать нельзя
--- может быть это ромб, а может быть это квадрат --- это НЕ признак))
а вот если известно, что это квадрат,
то точно у него стороны равны (это свойство)))
если известно, что это ромб,
то точно у него стороны равны (это свойство)))
если диагонали 4-угольника точкой пересечения делятся пополам,
то это точно параллелограмм (это ПРИЗНАК)))
это может быть и прямоугольник, это может быть и ромб
(они же все являются параллелограммами)))
дан треугольник (какой-то, не известно какой),
но про него известно, что две стороны у него равны (это ПРИЗНАК)
---вывод: это точно равнобедренный треугольник
дан равнобедренный треугольник (известно какой)
---вывод: у него две стороны точно равны (это СВОЙСТВО)
Объяснение:Имеется четыре вершины A, B, C и D, значит фигура на рисунке представляет собой четырёхугольник. Известно, что два угла четырёх угольника ∠BAD=∠BCD=90°, по обозначению углов уже понятно, что это противоположные углы и, значит, наша фигура прямоугольник. Но даны ещё два угла, которые дополняют друг друга ∠ADB=15° и ∠BDC=75°. Сумма этих углов равна 90°. То есть имеем четырёхугольник у которого известно, что три угла равны 90°, значит это прямоугольник, а у прямоугольника все стороны параллельны, т.е. AD║BC.
объяснение:
подозреваю, что длина круга, вписанного в ромб, равна не 24, а 24пи: уж удобны числа.
нарисуй ромб с длинной диагональю длиной х и короткой длиной у. опусти из центра высоту на сторону. эта высота - радиус. она равна 24пи/2пи = 12.
площадь тр-ка аво (ав - сторона, о - центр) равна 600/4 = 150.
ав = 150 : 12/2 = 25.
система: х * у/2 = 600
x^2/4 + y^2/4 = 25^2 (по пифагору) .
отриц. корни - на фиг.
х = 40; у = 30