Втреугольнике авс биссектриса угла а делит высоту, проведенную из вершины в, в отношении 13: 12, считая от т. в. найдите длину стороны вс треугольника, если радиус описанной около него окружности равен 26 см
В треугольнике АВС биссектриса угла А делит высоту, проведенную из вершины В, в отношении 13:12, считая от т. В. Найдите длину стороны ВС треугольника, если радиус описанной около него окружности равен 26 см
Биссектриса в треугольнике делит сторону, которую пересекает, в отношении прилежащих к ней сторон. Следовательно, АВ:АН=13:12 Уже из этого отношения гипотенузы к катету видно, что стороны прямоугольного треугольника АВН относится к так называемым тройкам Пифагора (13, 12, 5) Проверим по т. Пифагора Пусть АВ=13х, АН=12х, тогда ВН=√(АВ²- АН²)=√(169х²-144х²)=5х Тогда sin A=BH:AB=5:13 По т.синусов ВС:sin A=2R ВС:(5/13)=2R 13ВС=260 см ВС=20 см
Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
Вспомним свойство основания высоты пирамиды: Основание высоты пирамиды совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий: 1) Все апофемы равны 2) Все боковые грани одинаково наклонены к основанию 3) Все апофемы одинаково наклонены к высоте пирамиды 4) Высота пирамиды одинаково наклонена ко всем боковым граням. И наоборот - если снование высоты пирамиды совпадает с центром вписанной в основание пирамиды окружности, то справедливы приведенные выше условия. В данной задаче основание высоты пирамиды совпадает с центром вписанной окружности. Следовательно, все апофемы равны. Подробное решение в приложении. ---------- [email protected]
Биссектриса в треугольнике делит сторону, которую пересекает, в отношении прилежащих к ней сторон.
Следовательно, АВ:АН=13:12
Уже из этого отношения гипотенузы к катету видно, что стороны прямоугольного треугольника АВН относится к так называемым тройкам Пифагора (13, 12, 5) Проверим по т. Пифагора
Пусть АВ=13х, АН=12х, тогда
ВН=√(АВ²- АН²)=√(169х²-144х²)=5х
Тогда sin A=BH:AB=5:13
По т.синусов ВС:sin A=2R
ВС:(5/13)=2R
13ВС=260 см
ВС=20 см