35 это назовите город, аозле которого в 1410 году состоялась битва, в результате которой польско-литовская армия одержала победу на тевтонским ордером? один ответ. 1) гданьсе 2) люблин 3)познань 4) краков 5) грюнвальд
Построим равносторонний треугольник АВС, отметим точку вне треугольника Д, соединим точку Д с вершинами В и С. Получился треугольник ВДС, условно возьмем сторону треуг АВС пустьбудет АВ=ВС=СА=х, а стороны треуг ВД=с и СД=д, тогда из неравенства треугольника IхI≤IсI+IдI. Теперь возьмем точку М внутри треуг АВС. Получился треуг АМВ, пусть ВМ=в, а АМ=а, тогда из неравенства треугольника IаI≤IвI+IхI, а так как IхI≤IсI+IдI то вместо х подставим сумму с+д, в любом случае с+д будет либо больше, либо равно х. получаем IаI≤IвI+IсI+IдI. Вот мы и доказали, что АМ≤ВМ+ВД+СД.
НЕРАВЕНСТВО ТРЕУГОЛЬНИКА в геометрии утверждает, что длина любой тороны треугольника всегда не превосходит сумму длин двух его сторон. Пусть АВС-треугольник, тогда IАВI≤IВСI+IСАI, причем IАВI=IВСI+IСАI, то т.С будет лежать строго на отрезке АВ между точками А и В и такой треугольник ВЫРОЖДЕН.
Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
ответ: Люблин
Объяснение: