Известная площадь параллелограмма равна CD*H=30, площадь S треугольника BCE S=(1/2)*(CD/2)*H=30/4 , тогда искомая площадь трапеции ABED равна разности площадей (30 - S)=30 - 30/4=90/4=22,5.
Полученная фигура--пирамида , в основании которой лежит прямоугольный треугольник(ВСД-обозначим) , где ВС-гипотенуза . А--вершина пирамиды , АК--высота. Причём , К∈ВС и является центром описанной окружности основания , а в прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, т. е. ВК=КС=8см. АК перпендикулярна ВС( высота). Из ΔАВК (угол К=90 град) по теореме Пифагора : АВ²=АК²+ВК² АВ²=8²+15²=64+225=289 АВ=√289=17(см) Точка А по условию задачи равноудалена от вершин Δ, значит АВ=АД=АС=17см
Известная площадь параллелограмма равна CD*H=30, площадь S треугольника BCE S=(1/2)*(CD/2)*H=30/4 , тогда искомая площадь трапеции ABED равна разности площадей (30 - S)=30 - 30/4=90/4=22,5.
Объяснение: