3см
Объяснение:
x+x+7=13 (два катета равны гипотенузе)
2x=6
x=3-один катет
3+7=10-второй катет
Задача 2.
Задача 3.
Проекциями прямых параллельных сторонам исходного параллелограмма будут прямые, проходящие через т. пересечения диагоналей и середины сторон у параллелограмма проекции
Объяснение:
Дано
АВСД - прямоугольник
АВ = 6 см
АД = 2√3 см
Найти
уг. м/ду АС и ВД
Решение
Очевидно, что АС и ВД - диагонали прямоугольника.
Обозначим т. пересечения как т. О
Тогда уг.АОД - искомый угол между диагоналями.
Обозначим
По св-вам прямоугольника, его диагонали равны и в т. пересечения делятся пополам. Т.е.
АО = ОС = ВО = ОД
По Т. Пифагора можно найти диагонали:
ВД² = АВ² + АД²
BD = \sqrt{AB^2 + AD^2} \\ BD = \sqrt{6^2 + 2\sqrt(3)^2}
Соответственно
АС = ВД = 4√3Рассмотрим тогда треугольник АОД, он равнобедренный, т.к.
Так же 2√3 равна и сторона АД нашего прямоугольника.
То есть - мы получаем, что
АО = ОД = АД = 2√3
Следовательно - ∆АОД равносторонний,
а это означает, что искомый угол AOД
Для особо дотошных:
По Т. косинусов имеем:
Отсюда
Объяснение:
x - меньший катет
(x+7) - больший катет
x^2+(x+7)^2=169
x^2+x^2+14x+49=169
2x^2+14x-120=0
x^2+7x-60=0
D=49-4*1*(-60) = 289
x1=(-7+17)/2=5
x2=(-7-17)/2=-12 - лишний корень
ответ: 1-й катет = 5 см, 2-й катет = 12 см