Сумма противоположных углов вписанной трапеции составляет 180°, поэтому:
1) Если ∠А=81°, то ∠С=180-81=99°;
2) Если ∠А=47°, то ∠С=180-47=133°;
Сумма углов трапеции, прилегающих к боковой стороне, составляет 180°, поэтому
3) Если ∠А=46°, то ∠В=180-46=134°;
4) Если ∠А=54°, то ∠В=180-54=126°
У описанной трапеции сумма оснований равна сумме боковых сторон, поэтому AD+ВС=АВ+CD
5) 14+22=13+AD; AD=23 см.
6) 10+12=6+AD; AD=16 см
7) 13+11=4+AD; AD=20 см
Высота вписанной трапеции равна диаметру окружности, поэтому:
8) h=26*2=52 см
9) h=28*2=56 см
10) h=44*2=88 cм
геометрия (9 класс)
Найти длину окружности ,описанной около равнобедренного треугольника с основанием 10 см и углом 30° при основании .
Дано: ∠A = ∠C =30 ° , AC=b =10 см
----------------------------
R - ?
решение : Можно разными но геометрия (9 класс)
→ рационально использовать теорема синусов :
a/sin∠A = b /sin∠B = c /sin∠C = 2R
Угол против основания ∠B =180° - (30°+30°) = 180° - 60° 120°
AC/sin∠B =2R ⇔ R = AC/2sin∠B
R = 10 /2sin(180° - 60°) =10/2sin60° =10/ (2*√3 / 2) =10 /√3 =( 10√3) /3