ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото
Площадь AOB Saob = a*b*sin(Ф)/2; где Ф = ∠AOB;
аналогично Sboc = b*c*sin(Ф)/2; Scod = c*d*sin(Ф)/2; Saod = a*d*sin(Ф)/2;
Отсюда легко видеть, что
если c*d = x; то a*b = 2*x; и
если a*d = y; то c*b = 18*y; где x и y - неизвестные пока величины.
Отсюда 9*y/x = c/a; и x/y = c/a; то есть (x/y)^2 = 9; x = 3*y;
(или можно перемножить :) abcd = 2x^2 = 18y^2; x = 3y;)
Получилось, что Scod = 3*Saod;
28 = Saod + 3*Saod + 18*Saod + 6*Saod = 28*Saod;
Saod = 1; Saob = 6; Sboc = 18; Scod = 3;