М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mahvash
mahvash
31.01.2023 13:26 •  Геометрия

Определите, при каком значении переменной х вектора а (2; -1; 8) и b (-10; x; -40):

а) перпендикулярны
б) коллинеарны

👇
Ответ:
NikitaPetrov1234
NikitaPetrov1234
31.01.2023

Объяснение:

а)Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Т.К а(2; -1;8) b (-10;х; -40) , то

а*в=2*(-10)-1*х+8*(-40) , а*в=0

-20-х-320=0,

-340-20х=0

-20х=340

х=-17

б) Два вектора a и b коллинеарны ,если их координаты пропорциональны, значит если а(2; -1;8) b (-10;х; -40) , то 2/(-10)=-1/х . х=5

4,6(84 оценок)
Открыть все ответы
Ответ:
Kurbatovaolga15
Kurbatovaolga15
31.01.2023

Две хорды окружности АС и BD взаимно перпендикулярны.

а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.

б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины  хорд АВ и CD, равен 5.

————————

а) Обозначим середины хорд АС и ВD точками К и М соответственно. .   Угол Т в точке пересечения хорд - прямой (дано).

 Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника  равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.

---------------

б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и  при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.  

   Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.  

  Из решения  пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ.  Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия.  По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)


Геометрия, 11 класс, 100б. С полным решением
4,8(63 оценок)
Ответ:

Две хорды окружности АС и BD взаимно перпендикулярны.

а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.

б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины  хорд АВ и CD, равен 5.

————————

а) Обозначим середины хорд АС и ВD точками К и М соответственно. .   Угол Т в точке пересечения хорд - прямой (дано).

 Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника  равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.

---------------

б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и  при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.  

   Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.  

  Из решения  пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ.  Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия.  По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)


Геометрия, 11 класс, 100б. С полным решением
4,4(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ