A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
1.
∠САО = ∠МВО как накрест лежащие при пересечении АС║ВМ секущей АВ,
∠СОА = ∠МОВ как вертикальные, ⇒
ΔСОА подобен ΔМОВ по двум углам.
СО : ОМ = АС : МВ
10 : ОМ = 15 : 3
ОМ = 10 · 3 : 15 = 2 см
СМ = СО + ОМ = 10 + 2 = 12 см
А2.
∠АРК = ∠АСВ как накрест лежащие при пересечении КР║ВС секущей АС,
∠А общий для треугольников АКР и АВС, ⇒
ΔАКР подобен ΔАВС по двум углам.
Отношение периметров подобных треугольников равно коэффициенту подобия:
Pakp : Pabc = AK : AB
Pakp = Pabc · AK / AB = (16 + 15 + 8) · 4 / 16 = 39 / 4 = 9,75 см