Відповідь:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Пояснення:
Смотри картинку
Геометрия — важный раздел математики. Ее возникновение уходит в глубь тысячелетий и связано прежде всего с развитием ремесел, культуры, искусств, с трудовой деятельностью человека и наблюдением окружающего мира. Об этом свидетельствуют названия геометрических фигур.
Например, название фигуры «трапеция» происходит от греческого слова «трапезион» (столик) , от которого произошли также слово «трапеза» и другие родственные слова. От греческого слова «конос» (сосновая шишка) произошло название «конус» , а термин «линия» возник от латинского «линум» (льняная нить) .
Геометрические знания широко применяются в жизни — в быту, на производстве, в науке. При покупке обоев надо знать площадь стен комнаты; при определении расстояния до предмета, наблюдаемого с двух точек зрения, нужно пользоваться известными вам теоремами; при изготовлении технических чертежей — выполнять геометрические построения. И если ты, юный читатель, хорошо изучил курс геометрии, то не останешься безоружным, когда при решении практических задач потребуется применить геометрические теоремы или формулы.
Я уже решал тут такую задачу, не могу вспомнить номер.
Условие неоднозначно, ответ зависит от того, какой именно катет пересекает заданный перпендикуляр. Однако в любом случае, поскольку окружность касается трех сторон треугольника, то это - вписанная окружность.
Далее, я не стану каждый раз объяснять, почему отрезки касательных из одной точки до точек касания равны, а буду сразу использовать это, не поясняя (! - нарисуйте чертеж). Кроме того, если касательная параллельна радиусу, то расстояние от ЛЮБОЙ ТОЧКИ ЭТОГО РАДИУСА до этой (параллельной ему) касательной тоже РАВНО радиусу. Тоже не буду объяснять, а сразу пользоваться.
Обозначим х - некая мера измерения сторон прямоугольного треугольника, так что катеты будут 7*х и 24*х, отсюда сразу гипотенуза 25*х, радиус вписанной окружности r = (a + b - c)/2 = 3*x, отрезки, на которые точка касания делит гипотенузу - 4*x и 21*x.
Перпендикуляр к гипотенузе, касательный к вписанной окружности, можно провес ти Пусть заданный перпендикуляр пересекает МАЛЫЙ катет.
Тогда его основание отстоит от вершины гипотенузы, общей с малым катетом, на
4*х - 3*х = х;
Отсеченный треугольник с катетами x и m=14 подобен исходному, то есть
x/m = 7/24; х = 49/12; r = 49/4;
2). Пусть заданный перпендикуляр пересекает БОЛЬШОЙ катет.
Тогда его основание отстоит от вершины гипотенузы, общей с БОЛЬШИМ катетом, на
21*х - 3*х = 18*х; (еще раз скажу - я уже объяснил раньше, почему это так! Рисуйте чертеж.)
Отсеченный треугольник с катетами 18*x и m=14 подобен исходному, то есть
18*x/m = 24/7; х = 8/3; r = 8;