3√29 cм ≈ 16,16 см
Объяснение:
1) Находим высоту.
Так ка площадь треугольника равна половине произведения основания на высоту, то:
90 = (12 · H) : 2
Н = 180 : 12 = 15 см
2) В равнобедренном треугольнике высота, опущенная на основание, является его медианой, то есть делит основание пополам.
Это значит, что в прямоугольном треугольнике, образованном боковой стороной, высотой к основанию и половиной нижнего основания, боковая сторона АВ является гипотенузой, которую можно найти по теореме Пифагора:
АВ = √(6² + 15²) = √(36 + 225) = √261 = √(9 · 29) = 3√29 cм ≈ 3· 5,385 ≈ 16,16 см
ответ: боковая сторона равна 3√29 cм ≈ 16,16 см
ВВедём обозначения Пусть точка из которой проведены наклонные М Её проекция на плоскость О Наклонные МР и МК. Пусть длина одной наклонной хсм тогда второй х+26 У меньшей наклонной меньшая проекция. Выразим из двух треугольников РМО и КМО длину МО . Выразим её квадрат МО в квадрате х*х-144 или (х+26)*(х+26)-1600. Составим равенство и упростим х*х-144= х*х +52х+676 -1600 получим 52х=780 х 780: 52 х= 15 см. Этодлина перпендикуляра Найдём х х= корню из 144+225 х= корень из 369 МК равна корню из 225+1600=1825
480 = х^2 +14x
x^2 +14x - 480 =0
x = 16 x = -30 (не подходит) Одна диагональ = 16, другая = 30 ( х+14)
Две диагонали делят ромб на 4 равных прямоугольных Δ, в которых катеты 8 и 15. Сторону ромба ищем по т. Пифагора. a^2 = 64 + 225
a^2 = 289
a = 17 (сторона ромба)
Теперь ищем периметр. Р = 17·4 = 68(см)