Объяснение:
Отрезки касательных, проведенных из одной точки к окружности равны. 1. Поэтому ВД = ВЕ = 7, а АД=AF=9, тогда АВ = АД+ДВ = 9+7=16
2. Центральный угол ВОС опирается на дугу ВС и равен угловой мере этой дуги. Значит угловая мера дуги ВС = 76°. А вписанный угол ВАС, опирающийся на ту же дугу в два раза меньше угловой величины дуги <BAC = <BOC/2 = 76°/2=36°
3. Вписать в окружность четырехугольник можно в том случае, если сумма противолежащих углов равна 180°
Против угла В лежит угол Д, поэтому <B= 180°-76°=104°
На всякий <C=180°-65°=115°
См. рис.
Так как AD - диаметр окружности, то угол ∠ABD = 90°
Следовательно, оставшийся угол прямоугольного
треугольника ΔABD: ∠BAD = 90 - 65 = 25°
Так как угол ∠BAD - вписанный, то величина дуги, на которую он опирается:
∪BCD = 2 · ∠BAD = 50°
Искомый угол ∠С = ∠BCD опирается на оставшуюся дугу
окружности:
∪BAD = 360 - ∪BCD = 360 - 50 = 310°
И величина угла ∠С = 310 : 2 = 155°
Причем, величина угла ∠С не зависит от местоположения точки С на дуге ∪BCD, так как в любом случае этот угол опирается на дугу ∪BAD, равную 310°