Объяснение:
№1. Если т. М симметрична точке К относительно точки Р, значит т .Р - середина отрезка КМ. Используем формулы нахождения координат середины отрезка: х = (х₁ + х₂) :2, х₁ = 2х - х₂ = 2· 1 - 9 = 2 - 9 = -7
аналогично у₁ = 2у - у₂ = 2 · (-6) - (-5) = - 12 + 5 = - 7
z₁ = 2z - z₂ = 2 · 3 - 1 = 6 - 1 = 5 ответ: (-7; -7;5)
№2. т. О(0; 0; 0) - центр гомотетии, по определению гомотетии ОК = 0,5ОА. Значит т. К(-2 :2; 4: 2; -6: 2) = (-1; 2; -3), т.к. 0,5 это половина
ответ((-1; 2; -3)
№3. Для определения перпендикулярности достаточно доказать, что скалярное произведение векторов равно нулю.
→ →
а · в = а₁ в₁ + а₂в₂ + а₃в₃ = -2· 6 + 1·(-5) + 3 ·7 = -12 -5 +21 = 4.
Т.к. скалярное произведение не равно нулю, то вектора не перпендикулярны.
ответ: нет
см. рисунок во вкладке
Объем конуса V=1/3*pi*r^2*h (1)
Пусть конус образован вращением треугольника АВС вокруг катета ВС,
тогда радиус основания АС=r ; высота BC=h.
По условию 1/2*rh=S подставим в (1)
V= (2pi/3*r) * (1/2*rh)=2pi/3*r*S. (2)
Кроме того , по условию , 2pi*DN=L , где D- точка пересечения медиан, a DN перпендикуляр к ВС.
Но DN : AC =DM : AM = 1:3 (на основании свойства медиан)
откуда DN=r/3 , следовательно L=2pi/3*r , отсюда r=3L/2pi. (3)
Подставим (3) в (2)
V=2pi/3*S*3L/2pi = SL
ответ V=SL