Дано: окружность, т.О - центр, ABCDEF - впис. прав. 6-угольник, АВ= 7 см, MNK - впис. прав. треугольник.
Найти: Рmnk.
Решение.
1) Радиус описанной окружности всегда равен стороне правильного шестиугольника, поэтому сразу делаем вывод, что радиус данной окружности равен стороне данного правильного шестиугольника. R=AB= 7 см.
2) Радиус описанной окружности правильного треугольника, выраженный через его сторону, равен:
R= √3/3 • а, где R - радиус, а "а" - сторона прав. треугольника.
Находим сторону треугольника ΔMNK.
7= √3/3 • MN;
MN= 7: √3/3;
MN= 7• 3/√3;
MN= 21/√3= 21√3/3= 7√3 (см)
3) Периметр треугольника MNK
Pmnk= 3MN= 3•7√3= 21√3 (см)
ответ: 21√3 см.
В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.