Периметр треугольника KLM = MK + ML + KL По условию KL = KC + LC Отрезки касательных проведенные из одной и той же точки к одной и той же окружности равны. Тогда KC = KA LC = LB Следовательно KL = KC + LC = KA + LB Подставим это в первое равенство Периметр треугольника KLM = MK + ML + KL = = MK + ML + KA + LB = = MK + KA + ML + LB Очевидно что MK + KA = MA ML + LB = MB Тогда Периметр треугольника KLM = MK + ML + KL = MA + MB Последнее выражение (MA + MB ) не зависит от С Следовательно периметр треугольника KLM не зависит от выбора точки С что и требовалось доказать.
Градусные меры, приведены на рисунке, решение: 1. В красный на рисунке обведены те градусы что не заданы в условии, тогда исходя из условия данных углов, найдем угол DBA:
Получаем, что DBA равен 65 градусов.
2. Треугольник ABD = треугольнику DBC: 1) ВD - общая сторона 2) угол ABD= углу DBC(доказано выше) 3) АВ=ВС (из условия) Получаем что треугольники равны, по двум сторонам и углу между ними.
3. У равных треугольников соответствующие элементы равны, получаем: 1)Угол BDA= углу BDC = 30 2) угол DAB = углу BCD = 85
4.Проверим правильно ли мы нашли, сумма углов выпуклого четырехугольника равна 360 градусов:
Что и требовалось доказать. ответ: 30, 65, 80 градусов
По условию KL = KC + LC
Отрезки касательных проведенные из одной и той же точки к одной и той же окружности равны.
Тогда
KC = KA
LC = LB
Следовательно KL = KC + LC = KA + LB
Подставим это в первое равенство
Периметр треугольника KLM = MK + ML + KL =
= MK + ML + KA + LB =
= MK + KA + ML + LB
Очевидно что
MK + KA = MA
ML + LB = MB
Тогда
Периметр треугольника KLM = MK + ML + KL = MA + MB
Последнее выражение (MA + MB ) не зависит от С
Следовательно периметр треугольника KLM не зависит от выбора точки С
что и требовалось доказать.